24 type(display_type) :: disp
25 integer(IK) :: itry, ntry
= 10
26 character(:),
allocatable :: format
30 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
31 call disp%show(
"!Compute the correlation matrix from covariance matrix.")
32 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
37 real(TKG),
allocatable :: cov(:,:), cor(:,:), std(:)
41 call disp%show(
"ndim = getUnifRand(0, 7)")
45 call disp%show(
"std = getUnifRand(1, ndim, ndim)")
49 call disp%show(
"cov = getCovRand(1._TKG, std)")
53 call disp%show(
"cor = getCor(cov, uppDia)")
57 call disp%show(
"cor = getCor(cov, upp, stdinv = 1 / std)")
58 cor
= getCor(cov, upp, stdinv
= 1 / std)
61 call disp%show(
"cor = getCor(cov, lowDia)")
65 call disp%show(
"cor = getCor(cov, low, stdinv = 1 / std)")
66 cor
= getCor(cov, low, stdinv
= 1 / std)
69 call disp%show(
"getCov(getCor(cov, lowDia), lowDia, std) ! reconstruct the original covariance matrix.")
71 call disp%show(
"getCov(getCor(cov, uppDia), uppDia, std) ! reconstruct the original covariance matrix.")
78 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
79 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
80 call disp%show(
"!Compute the Pearson correlation matrix for a pair of time series.")
81 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
82 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
87 integer(IK) :: ndim, nsam, dim
88 real(TKG),
allocatable :: sample(:,:), cor(:,:), mean(:)
89 format = getFormat(mold
= [
0._TKG], ed
= SK_
"es", signed
= .true._LK)
90 call disp%show(
"ndim = 2; nsam = 10; dim = 2")
91 ndim
= 2; nsam
= 10; dim
= 2
92 call disp%show(
"sample = reshape(getUnifRand(1, 20, ndim * nsam), shape = [ndim, nsam], order = [2, 1])")
93 sample
= reshape(
getUnifRand(
1,
20, ndim
* nsam), shape
= [ndim, nsam], order
= [
2,
1])
95 call disp%show( sample ,
format = format )
96 call disp%show(
"mean = getMean(sample, dim)")
99 call disp%show( mean ,
format = format )
100 call disp%show(
"cor = getCor(sample, dim) ! same result as above.")
103 call disp%show( cor ,
format = format )
105 call disp%show(
"Compute the sample correlation along the first dimension.", deliml
= SK_
'''')
109 call disp%show(
"cor = getCor(transpose(sample), dim) ! same result as above.")
110 cor
= getCor(
transpose(sample), dim)
112 call disp%show( cor ,
format = format )
114 call disp%show(
"Compute the full sample correlation for a pair of time series.", deliml
= SK_
'''')
116 call disp%show(
"cor(1,1) = getCor(sample(1,:), sample(2,:)) ! same result as above.")
117 cor(
1,
1)
= getCor(sample(
1,:), sample(
2,:))
119 call disp%show( cor(
1,
1) ,
format = format )
124 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
125 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
126 call disp%show(
"!Compute the Pearson correlation matrix for a weighted pair of time series.")
127 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
128 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
134 integer(IK),
allocatable :: iweight(:)
135 real(TKG),
allocatable :: rweight(:)
137 integer(IK) :: iweisum
138 integer(IK) :: ndim, nsam, dim
139 real(TKG),
allocatable :: sample(:,:), cor(:,:), mean(:)
140 format = getFormat(mold
= [
0._TKG], ed
= SK_
"es", signed
= .true._LK)
141 call disp%show(
"ndim = 2; nsam = 10; dim = 2")
142 ndim
= 2; nsam
= 10; dim
= 2
143 call disp%show(
"sample = reshape(getUnifRand(1, 20, ndim * nsam), shape = [ndim, nsam], order = [2, 1])")
144 sample
= reshape(
getUnifRand(
1,
20, ndim
* nsam), shape
= [ndim, nsam], order
= [
2,
1])
146 call disp%show( sample ,
format = format )
147 call disp%show(
"call setResized(mean, ndim)")
149 call disp%show(
"iweight = getUnifRand(1, 10, nsam) ! integer-valued weights.")
153 call disp%show(
"call setMean(mean, sample, dim, iweight, iweisum)")
154 call setMean(mean, sample, dim, iweight, iweisum)
159 call disp%show(
"rweight = iweight ! or real-valued weights.")
163 call disp%show(
"call setMean(mean, sample, dim, rweight, rweisum)")
164 call setMean(mean, sample, dim, rweight, rweisum)
166 call disp%show( mean ,
format = format )
168 call disp%show( rweisum ,
format = format )
171 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
172 call disp%show(
"!Compute the correlation matrix with integer weights.")
173 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
176 call disp%show(
"cor = getCor(sample, dim, iweight) ! same result as above.")
177 cor
= getCor(sample, dim, iweight)
179 call disp%show( cor ,
format = format )
181 call disp%show(
"Compute the sample correlation along the first dimension.", deliml
= SK_
'''')
185 call disp%show(
"cor = getCor(transpose(sample), dim, iweight) ! same result as above.")
186 cor
= getCor(
transpose(sample), dim, iweight)
188 call disp%show( cor ,
format = format )
190 call disp%show(
"Compute the full sample correlation for a pair of time series.", deliml
= SK_
'''')
192 call disp%show(
"cor(1,1) = getCor(sample(1,:), sample(2,:), iweight) ! same result as above.")
193 cor(
1,
1)
= getCor(sample(
1,:), sample(
2,:), iweight)
195 call disp%show( cor(
1,
1) ,
format = format )
199 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
200 call disp%show(
"!Compute the correlation matrix with real weights.")
201 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
206 call disp%show(
"cor = getCor(sample, dim, rweight) ! same result as above.")
207 cor
= getCor(sample, dim, rweight)
209 call disp%show( cor ,
format = format )
211 call disp%show(
"Compute the sample correlation along the first dimension.", deliml
= SK_
'''')
215 call disp%show(
"cor = getCor(transpose(sample), dim, rweight) ! same result as above.")
216 cor
= getCor(
transpose(sample), dim, rweight)
218 call disp%show( cor ,
format = format )
220 call disp%show(
"Compute the full sample correlation for a pair of time series.", deliml
= SK_
'''')
222 call disp%show(
"cor(1,1) = getCor(sample(1,:), sample(2,:), rweight) ! same result as above.")
223 cor(
1,
1)
= getCor(sample(
1,:), sample(
2,:), rweight)
225 call disp%show( cor(
1,
1) ,
format = format )
Generate and return an array of the specified rank and shape of arbitrary intrinsic type and kind wit...
Generate minimally-spaced character, integer, real sequences or sequences at fixed intervals of size ...
Allocate or resize (shrink or expand) an input allocatable scalar string or array of rank 1....
Generate count evenly spaced points over the interval [x1, x2] if x1 < x2, or [x2,...
Generate an equally-weighted (verbose or flattened) array of the input weighted array of rank 1 or 2.
Generate and return a random positive-definite (correlation or covariance) matrix using the Gram meth...
Generate and return a scalar or a contiguous array of rank 1 of length s1 of randomly uniformly distr...
This is a generic method of the derived type display_type with pass attribute.
This is a generic method of the derived type display_type with pass attribute.
Generate and return the (optionally unbiased) covariance matrix of a pair of (potentially weighted) t...
Generate and return the (weighted) mean of an input sample of nsam observations with ndim = 1 or 2 at...
Return the (weighted) mean of a pair of time series or of an input sample of nsam observations with n...
Generate a sample of shape (nsam), or (ndim, nsam) or (nsam, ndim) that is shifted by the specified i...
This module contains procedures and generic interfaces for convenient allocation and filling of array...
This module contains procedures and generic interfaces for generating ranges of discrete character,...
This module contains procedures and generic interfaces for resizing allocatable arrays of various typ...
This module contains procedures and generic interfaces for generating arrays with linear or logarithm...
This module contains procedures and generic interfaces for flattening (duplicating the elements of) a...
This module contains classes and procedures for generating random matrices distributed on the space o...
This module contains classes and procedures for computing various statistical quantities related to t...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
integer, parameter RKS
The single-precision real kind in Fortran mode. On most platforms, this is an 32-bit real kind.
This module contains classes and procedures for computing the properties related to the covariance ma...
This module contains classes and procedures for computing the first moment (i.e., the statistical mea...
This module contains classes and procedures for shifting univariate or multivariate samples by arbitr...
Generate and return an object of type display_type.
12+4.00000000,
+1.00000000,
+7.00000000,
+1.00000000,
+2.00000000,
+6.00000000,
+1.00000000
15+15.9999981,
-3.62055397,
+21.8242397,
-0.647497892,
+2.41851354,
-8.25101376,
-1.86213255
16-3.62055397,
+1.00000000,
-6.40514708,
+0.185297295,
-0.339333564,
+0.220663548E-1,
+0.274384558
17+21.8242397,
-6.40514708,
+48.9999962,
+0.403621674,
-1.22789717,
+8.26337337,
-1.21427906
18-0.647497892,
+0.185297295,
+0.403621674,
+0.999999821,
+0.265933573,
-0.912627339,
+0.351888090
19+2.41851354,
-0.339333564,
-1.22789717,
+0.265933573,
+4.00000000,
-9.75441742,
-0.300967097
20-8.25101376,
+0.220663548E-1,
+8.26337337,
-0.912627339,
-9.75441742,
+36.0000000,
+2.71584511
21-1.86213255,
+0.274384558,
-1.21427906,
+0.351888090,
-0.300967097,
+2.71584511,
+1.00000012
24+1.00000000,
-0.905138612,
+0.779437244,
-0.161874518,
+0.302314222,
-0.343792289,
-0.465533197
25-0.905138612,
+1.00000000,
-0.915021062,
+0.185297310,
-0.169666782,
+0.367772579E-2,
+0.274384558
26+0.779437244,
-0.915021062,
+1.00000000,
+0.576602481E-1,
-0.877069458E-1,
+0.196747005,
-0.173468441
27-0.161874518,
+0.185297310,
+0.576602481E-1,
+1.00000000,
+0.132966802,
-0.152104571,
+0.351888120
28+0.302314222,
-0.169666782,
-0.877069458E-1,
+0.132966802,
+1.00000000,
-0.812868118,
-0.150483549
29-0.343792289,
+0.367772579E-2,
+0.196747005,
-0.152104571,
-0.812868118,
+1.00000000,
+0.452640861
30-0.465533197,
+0.274384558,
-0.173468441,
+0.351888120,
-0.150483549,
+0.452640861,
+1.00000000
31cor
= getCor(cov, upp, stdinv
= 1 / std)
33+1.00000000,
-0.905138493,
+0.779437184,
-0.161874473,
+0.302314192,
-0.343792260,
-0.465533137
34-0.905138493,
+1.00000000,
-0.915021062,
+0.185297295,
-0.169666782,
+0.367772579E-2,
+0.274384558
35+0.779437184,
-0.915021062,
+1.00000000,
+0.576602407E-1,
-0.877069458E-1,
+0.196747005,
-0.173468441
36-0.161874473,
+0.185297295,
+0.576602407E-1,
+1.00000000,
+0.132966787,
-0.152104557,
+0.351888090
37+0.302314192,
-0.169666782,
-0.877069458E-1,
+0.132966787,
+1.00000000,
-0.812868118,
-0.150483549
38-0.343792260,
+0.367772579E-2,
+0.196747005,
-0.152104557,
-0.812868118,
+1.00000000,
+0.452640861
39-0.465533137,
+0.274384558,
-0.173468441,
+0.351888090,
-0.150483549,
+0.452640861,
+1.00000000
42+1.00000000,
-0.905138612,
+0.779437244,
-0.161874518,
+0.302314222,
-0.343792289,
-0.465533197
43-0.905138612,
+1.00000000,
-0.915021062,
+0.185297310,
-0.169666782,
+0.367772579E-2,
+0.274384558
44+0.779437244,
-0.915021062,
+1.00000000,
+0.576602481E-1,
-0.877069458E-1,
+0.196747005,
-0.173468441
45-0.161874518,
+0.185297310,
+0.576602481E-1,
+1.00000000,
+0.132966802,
-0.152104571,
+0.351888120
46+0.302314222,
-0.169666782,
-0.877069458E-1,
+0.132966802,
+1.00000000,
-0.812868118,
-0.150483549
47-0.343792289,
+0.367772579E-2,
+0.196747005,
-0.152104571,
-0.812868118,
+1.00000000,
+0.452640861
48-0.465533197,
+0.274384558,
-0.173468441,
+0.351888120,
-0.150483549,
+0.452640861,
+1.00000000
49cor
= getCor(cov, low, stdinv
= 1 / std)
51+1.00000000,
-0.905138493,
+0.779437184,
-0.161874473,
+0.302314192,
-0.343792260,
-0.465533137
52-0.905138493,
+1.00000000,
-0.915021062,
+0.185297295,
-0.169666782,
+0.367772579E-2,
+0.274384558
53+0.779437184,
-0.915021062,
+1.00000000,
+0.576602407E-1,
-0.877069458E-1,
+0.196747005,
-0.173468441
54-0.161874473,
+0.185297295,
+0.576602407E-1,
+1.00000000,
+0.132966787,
-0.152104557,
+0.351888090
55+0.302314192,
-0.169666782,
-0.877069458E-1,
+0.132966787,
+1.00000000,
-0.812868118,
-0.150483549
56-0.343792260,
+0.367772579E-2,
+0.196747005,
-0.152104557,
-0.812868118,
+1.00000000,
+0.452640861
57-0.465533137,
+0.274384558,
-0.173468441,
+0.351888090,
-0.150483549,
+0.452640861,
+1.00000000
59+16.0000000,
-3.62055445,
+21.8242435,
-0.647498071,
+2.41851377,
-8.25101471,
-1.86213279
60-3.62055445,
+1.00000000,
-6.40514755,
+0.185297310,
-0.339333564,
+0.220663548E-1,
+0.274384558
61+21.8242435,
-6.40514755,
+49.0000000,
+0.403621733,
-1.22789729,
+8.26337433,
-1.21427906
62-0.647498071,
+0.185297310,
+0.403621733,
+1.00000000,
+0.265933603,
-0.912627459,
+0.351888120
63+2.41851377,
-0.339333564,
-1.22789729,
+0.265933603,
+4.00000000,
-9.75441742,
-0.300967097
64-8.25101471,
+0.220663548E-1,
+8.26337433,
-0.912627459,
-9.75441742,
+36.0000000,
+2.71584511
65-1.86213279,
+0.274384558,
-1.21427906,
+0.351888120,
-0.300967097,
+2.71584511,
+1.00000000
67+16.0000000,
-3.62055445,
+21.8242435,
-0.647498071,
+2.41851377,
-8.25101471,
-1.86213279
68-3.62055445,
+1.00000000,
-6.40514755,
+0.185297310,
-0.339333564,
+0.220663548E-1,
+0.274384558
69+21.8242435,
-6.40514755,
+49.0000000,
+0.403621733,
-1.22789729,
+8.26337433,
-1.21427906
70-0.647498071,
+0.185297310,
+0.403621733,
+1.00000000,
+0.265933603,
-0.912627459,
+0.351888120
71+2.41851377,
-0.339333564,
-1.22789729,
+0.265933603,
+4.00000000,
-9.75441742,
-0.300967097
72-8.25101471,
+0.220663548E-1,
+8.26337433,
-0.912627459,
-9.75441742,
+36.0000000,
+2.71584511
73-1.86213279,
+0.274384558,
-1.21427906,
+0.351888120,
-0.300967097,
+2.71584511,
+1.00000000
81+2.00000000,
+2.00000000
84+4.00000000,
+3.99492455
85+3.99492455,
+4.00000048
88+1.00000000,
+0.998731136
89+0.998731136,
+1.00000000
90cor
= getCor(cov, upp, stdinv
= 1 / std)
92+1.00000000,
+0.998731136
93+0.998731136,
+1.00000000
96+1.00000000,
+0.998731136
97+0.998731136,
+1.00000000
98cor
= getCor(cov, low, stdinv
= 1 / std)
100+1.00000000,
+0.998731136
101+0.998731136,
+1.00000000
103+4.00000000,
+3.99492455
104+3.99492455,
+4.00000000
106+4.00000000,
+3.99492455
107+3.99492455,
+4.00000000
115+2.00000000,
+1.00000000,
+3.00000000,
+4.00000000,
+2.00000000,
+1.00000000
118+3.99999952,
+1.18026459,
+4.16013670,
+0.893203139,
+1.67780912,
-0.483220547
119+1.18026459,
+1.00000000,
-0.513817668,
-1.36749721,
-0.634094179E-1,
+0.392314851
120+4.16013670,
-0.513817668,
+8.99999809,
+5.69412661,
+3.14331579,
-2.00817108
121+0.893203139,
-1.36749721,
+5.69412661,
+16.0000000,
-2.30509329,
-2.83024764
122+1.67780912,
-0.634094179E-1,
+3.14331579,
-2.30509329,
+4.00000000,
-0.859302998
123-0.483220547,
+0.392314851,
-2.00817108,
-2.83024764,
-0.859302998,
+0.999999940
126+1.00000000,
+0.590132356,
+0.693356276,
+0.111650407,
+0.419452339,
-0.241610333
127+0.590132356,
+1.00000000,
-0.171272576,
-0.341874301,
-0.317047089E-1,
+0.392314911
128+0.693356276,
-0.171272576,
+1.00000000,
+0.474510610,
+0.523886025,
-0.669390500
129+0.111650407,
-0.341874301,
+0.474510610,
+1.00000000,
-0.288136661,
-0.707561970
130+0.419452339,
-0.317047089E-1,
+0.523886025,
-0.288136661,
+1.00000000,
-0.429651558
131-0.241610333,
+0.392314911,
-0.669390500,
-0.707561970,
-0.429651558,
+1.00000000
132cor
= getCor(cov, upp, stdinv
= 1 / std)
134+1.00000000,
+0.590132296,
+0.693356156,
+0.111650392,
+0.419452280,
-0.241610274
135+0.590132296,
+1.00000000,
-0.171272561,
-0.341874301,
-0.317047089E-1,
+0.392314851
136+0.693356156,
-0.171272561,
+1.00000000,
+0.474510550,
+0.523885965,
-0.669390380
137+0.111650392,
-0.341874301,
+0.474510550,
+1.00000000,
-0.288136661,
-0.707561910
138+0.419452280,
-0.317047089E-1,
+0.523885965,
-0.288136661,
+1.00000000,
-0.429651499
139-0.241610274,
+0.392314851,
-0.669390380,
-0.707561910,
-0.429651499,
+1.00000000
142+1.00000000,
+0.590132356,
+0.693356276,
+0.111650407,
+0.419452339,
-0.241610333
143+0.590132356,
+1.00000000,
-0.171272576,
-0.341874301,
-0.317047089E-1,
+0.392314911
144+0.693356276,
-0.171272576,
+1.00000000,
+0.474510610,
+0.523886025,
-0.669390500
145+0.111650407,
-0.341874301,
+0.474510610,
+1.00000000,
-0.288136661,
-0.707561970
146+0.419452339,
-0.317047089E-1,
+0.523886025,
-0.288136661,
+1.00000000,
-0.429651558
147-0.241610333,
+0.392314911,
-0.669390500,
-0.707561970,
-0.429651558,
+1.00000000
148cor
= getCor(cov, low, stdinv
= 1 / std)
150+1.00000000,
+0.590132296,
+0.693356156,
+0.111650392,
+0.419452280,
-0.241610274
151+0.590132296,
+1.00000000,
-0.171272561,
-0.341874301,
-0.317047089E-1,
+0.392314851
152+0.693356156,
-0.171272561,
+1.00000000,
+0.474510550,
+0.523885965,
-0.669390380
153+0.111650392,
-0.341874301,
+0.474510550,
+1.00000000,
-0.288136661,
-0.707561910
154+0.419452280,
-0.317047089E-1,
+0.523885965,
-0.288136661,
+1.00000000,
-0.429651499
155-0.241610274,
+0.392314851,
-0.669390380,
-0.707561910,
-0.429651499,
+1.00000000
157+4.00000000,
+1.18026471,
+4.16013765,
+0.893203259,
+1.67780936,
-0.483220667
158+1.18026471,
+1.00000000,
-0.513817728,
-1.36749721,
-0.634094179E-1,
+0.392314911
159+4.16013765,
-0.513817728,
+9.00000000,
+5.69412708,
+3.14331627,
-2.00817156
160+0.893203259,
-1.36749721,
+5.69412708,
+16.0000000,
-2.30509329,
-2.83024788
161+1.67780936,
-0.634094179E-1,
+3.14331627,
-2.30509329,
+4.00000000,
-0.859303117
162-0.483220667,
+0.392314911,
-2.00817156,
-2.83024788,
-0.859303117,
+1.00000000
164+4.00000000,
+1.18026471,
+4.16013765,
+0.893203259,
+1.67780936,
-0.483220667
165+1.18026471,
+1.00000000,
-0.513817728,
-1.36749721,
-0.634094179E-1,
+0.392314911
166+4.16013765,
-0.513817728,
+9.00000000,
+5.69412708,
+3.14331627,
-2.00817156
167+0.893203259,
-1.36749721,
+5.69412708,
+16.0000000,
-2.30509329,
-2.83024788
168+1.67780936,
-0.634094179E-1,
+3.14331627,
-2.30509329,
+4.00000000,
-0.859303117
169-0.483220667,
+0.392314911,
-2.00817156,
-2.83024788,
-0.859303117,
+1.00000000
177+4.00000000,
+2.00000000,
+2.00000000,
+1.00000000
180+16.0000000,
-5.58781815,
+2.32739043,
+0.626870215
181-5.58781815,
+4.00000000,
-1.44074559,
+0.461182684
182+2.32739043,
-1.44074559,
+3.99999952,
+1.27536035
183+0.626870215,
+0.461182684,
+1.27536035,
+1.00000000
186+1.00000000,
-0.698477268,
+0.290923834,
+0.156717554
187-0.698477268,
+1.00000000,
-0.360186428,
+0.230591342
188+0.290923834,
-0.360186428,
+1.00000000,
+0.637680233
189+0.156717554,
+0.230591342,
+0.637680233,
+1.00000000
190cor
= getCor(cov, upp, stdinv
= 1 / std)
192+1.00000000,
-0.698477268,
+0.290923804,
+0.156717554
193-0.698477268,
+1.00000000,
-0.360186398,
+0.230591342
194+0.290923804,
-0.360186398,
+1.00000000,
+0.637680173
195+0.156717554,
+0.230591342,
+0.637680173,
+1.00000000
198+1.00000000,
-0.698477268,
+0.290923834,
+0.156717554
199-0.698477268,
+1.00000000,
-0.360186428,
+0.230591342
200+0.290923834,
-0.360186428,
+1.00000000,
+0.637680233
201+0.156717554,
+0.230591342,
+0.637680233,
+1.00000000
202cor
= getCor(cov, low, stdinv
= 1 / std)
204+1.00000000,
-0.698477268,
+0.290923804,
+0.156717554
205-0.698477268,
+1.00000000,
-0.360186398,
+0.230591342
206+0.290923804,
-0.360186398,
+1.00000000,
+0.637680173
207+0.156717554,
+0.230591342,
+0.637680173,
+1.00000000
209+16.0000000,
-5.58781815,
+2.32739067,
+0.626870215
210-5.58781815,
+4.00000000,
-1.44074571,
+0.461182684
211+2.32739067,
-1.44074571,
+4.00000000,
+1.27536047
212+0.626870215,
+0.461182684,
+1.27536047,
+1.00000000
214+16.0000000,
-5.58781815,
+2.32739067,
+0.626870215
215-5.58781815,
+4.00000000,
-1.44074571,
+0.461182684
216+2.32739067,
-1.44074571,
+4.00000000,
+1.27536047
217+0.626870215,
+0.461182684,
+1.27536047,
+1.00000000
225+4.00000000,
+1.00000000,
+3.00000000,
+4.00000000,
+2.00000000
228+16.0000000,
+3.02767801,
-9.61742592,
-12.0814743,
-5.63244200
229+3.02767801,
+1.00000000,
-1.70646954,
-3.79589796,
-0.428531528
230-9.61742592,
-1.70646954,
+9.00000191,
+5.00026083,
+2.13427949
231-12.0814743,
-3.79589796,
+5.00026083,
+16.0000019,
+3.10046911
232-5.63244200,
-0.428531528,
+2.13427949,
+3.10046911,
+4.00000000
235+1.00000000,
+0.756919503,
-0.801452100,
-0.755092144,
-0.704055250
236+0.756919503,
+1.00000000,
-0.568823159,
-0.948974490,
-0.214265764
237-0.801452100,
-0.568823159,
+1.00000000,
+0.416688383,
+0.355713218
238-0.755092144,
-0.948974490,
+0.416688383,
+1.00000000,
+0.387558639
239-0.704055250,
-0.214265764,
+0.355713218,
+0.387558639,
+1.00000000
240cor
= getCor(cov, upp, stdinv
= 1 / std)
242+1.00000000,
+0.756919503,
-0.801452160,
-0.755092144,
-0.704055250
243+0.756919503,
+1.00000000,
-0.568823218,
-0.948974490,
-0.214265764
244-0.801452160,
-0.568823218,
+1.00000000,
+0.416688412,
+0.355713248
245-0.755092144,
-0.948974490,
+0.416688412,
+1.00000000,
+0.387558639
246-0.704055250,
-0.214265764,
+0.355713248,
+0.387558639,
+1.00000000
249+1.00000000,
+0.756919503,
-0.801452100,
-0.755092144,
-0.704055250
250+0.756919503,
+1.00000000,
-0.568823159,
-0.948974490,
-0.214265764
251-0.801452100,
-0.568823159,
+1.00000000,
+0.416688383,
+0.355713218
252-0.755092144,
-0.948974490,
+0.416688383,
+1.00000000,
+0.387558639
253-0.704055250,
-0.214265764,
+0.355713218,
+0.387558639,
+1.00000000
254cor
= getCor(cov, low, stdinv
= 1 / std)
256+1.00000000,
+0.756919503,
-0.801452160,
-0.755092144,
-0.704055250
257+0.756919503,
+1.00000000,
-0.568823218,
-0.948974490,
-0.214265764
258-0.801452160,
-0.568823218,
+1.00000000,
+0.416688412,
+0.355713248
259-0.755092144,
-0.948974490,
+0.416688412,
+1.00000000,
+0.387558639
260-0.704055250,
-0.214265764,
+0.355713248,
+0.387558639,
+1.00000000
262+16.0000000,
+3.02767801,
-9.61742496,
-12.0814743,
-5.63244200
263+3.02767801,
+1.00000000,
-1.70646954,
-3.79589796,
-0.428531528
264-9.61742496,
-1.70646954,
+9.00000000,
+5.00026035,
+2.13427925
265-12.0814743,
-3.79589796,
+5.00026035,
+16.0000000,
+3.10046911
266-5.63244200,
-0.428531528,
+2.13427925,
+3.10046911,
+4.00000000
268+16.0000000,
+3.02767801,
-9.61742496,
-12.0814743,
-5.63244200
269+3.02767801,
+1.00000000,
-1.70646954,
-3.79589796,
-0.428531528
270-9.61742496,
-1.70646954,
+9.00000000,
+5.00026035,
+2.13427925
271-12.0814743,
-3.79589796,
+5.00026035,
+16.0000000,
+3.10046911
272-5.63244200,
-0.428531528,
+2.13427925,
+3.10046911,
+4.00000000
280+2.00000000,
+3.00000000,
+2.00000000,
+2.00000000,
+1.00000000
283+4.00000000,
+2.49345994,
+3.08140135,
+2.95499659,
-0.922998667
284+2.49345994,
+9.00000000,
-1.55313754,
+2.68888330,
-1.09782410
285+3.08140135,
-1.55313754,
+4.00000000,
+1.89834201,
-0.490174472
286+2.95499659,
+2.68888330,
+1.89834201,
+4.00000000,
-1.57213426
287-0.922998667,
-1.09782410,
-0.490174472,
-1.57213426,
+1.00000000
290+1.00000000,
+0.415576667,
+0.770350337,
+0.738749146,
-0.461499333
291+0.415576667,
+1.00000000,
-0.258856267,
+0.448147237,
-0.365941375
292+0.770350337,
-0.258856267,
+1.00000000,
+0.474585503,
-0.245087236
293+0.738749146,
+0.448147237,
+0.474585503,
+1.00000000,
-0.786067128
294-0.461499333,
-0.365941375,
-0.245087236,
-0.786067128,
+1.00000000
295cor
= getCor(cov, upp, stdinv
= 1 / std)
297+1.00000000,
+0.415576667,
+0.770350337,
+0.738749146,
-0.461499333
298+0.415576667,
+1.00000000,
-0.258856267,
+0.448147237,
-0.365941375
299+0.770350337,
-0.258856267,
+1.00000000,
+0.474585503,
-0.245087236
300+0.738749146,
+0.448147237,
+0.474585503,
+1.00000000,
-0.786067128
301-0.461499333,
-0.365941375,
-0.245087236,
-0.786067128,
+1.00000000
304+1.00000000,
+0.415576667,
+0.770350337,
+0.738749146,
-0.461499333
305+0.415576667,
+1.00000000,
-0.258856267,
+0.448147237,
-0.365941375
306+0.770350337,
-0.258856267,
+1.00000000,
+0.474585503,
-0.245087236
307+0.738749146,
+0.448147237,
+0.474585503,
+1.00000000,
-0.786067128
308-0.461499333,
-0.365941375,
-0.245087236,
-0.786067128,
+1.00000000
309cor
= getCor(cov, low, stdinv
= 1 / std)
311+1.00000000,
+0.415576667,
+0.770350337,
+0.738749146,
-0.461499333
312+0.415576667,
+1.00000000,
-0.258856267,
+0.448147237,
-0.365941375
313+0.770350337,
-0.258856267,
+1.00000000,
+0.474585503,
-0.245087236
314+0.738749146,
+0.448147237,
+0.474585503,
+1.00000000,
-0.786067128
315-0.461499333,
-0.365941375,
-0.245087236,
-0.786067128,
+1.00000000
317+4.00000000,
+2.49345994,
+3.08140135,
+2.95499659,
-0.922998667
318+2.49345994,
+9.00000000,
-1.55313754,
+2.68888330,
-1.09782410
319+3.08140135,
-1.55313754,
+4.00000000,
+1.89834201,
-0.490174472
320+2.95499659,
+2.68888330,
+1.89834201,
+4.00000000,
-1.57213426
321-0.922998667,
-1.09782410,
-0.490174472,
-1.57213426,
+1.00000000
323+4.00000000,
+2.49345994,
+3.08140135,
+2.95499659,
-0.922998667
324+2.49345994,
+9.00000000,
-1.55313754,
+2.68888330,
-1.09782410
325+3.08140135,
-1.55313754,
+4.00000000,
+1.89834201,
-0.490174472
326+2.95499659,
+2.68888330,
+1.89834201,
+4.00000000,
-1.57213426
327-0.922998667,
-1.09782410,
-0.490174472,
-1.57213426,
+1.00000000
335+2.00000000,
+1.00000000
338+4.00000000,
-0.182149988E-1
339-0.182149988E-1,
+1.00000000
342+1.00000000,
-0.910749938E-2
343-0.910749938E-2,
+1.00000000
344cor
= getCor(cov, upp, stdinv
= 1 / std)
346+1.00000000,
-0.910749938E-2
347-0.910749938E-2,
+1.00000000
350+1.00000000,
-0.910749938E-2
351-0.910749938E-2,
+1.00000000
352cor
= getCor(cov, low, stdinv
= 1 / std)
354+1.00000000,
-0.910749938E-2
355-0.910749938E-2,
+1.00000000
357+4.00000000,
-0.182149988E-1
358-0.182149988E-1,
+1.00000000
360+4.00000000,
-0.182149988E-1
361-0.182149988E-1,
+1.00000000
369+3.00000000,
+4.00000000,
+4.00000000,
+1.00000000,
+1.00000000
372+9.00000000,
+2.55421615,
+8.16738319,
-1.29766917,
-0.384563580E-1
373+2.55421615,
+16.0000019,
+4.42552280,
-0.704014182,
-1.86062086
374+8.16738319,
+4.42552280,
+15.9999990,
-0.147946119,
-1.76953816
375-1.29766917,
-0.704014182,
-0.147946119,
+1.00000024,
-0.721210301
376-0.384563580E-1,
-1.86062086,
-1.76953816,
-0.721210301,
+0.999999940
379+1.00000000,
+0.212851346,
+0.680615366,
-0.432556361,
-0.128187872E-1
380+0.212851346,
+1.00000000,
+0.276595205,
-0.176003531,
-0.465155274
381+0.680615366,
+0.276595205,
+1.00000000,
-0.369865298E-1,
-0.442384660
382-0.432556361,
-0.176003531,
-0.369865298E-1,
+1.00000000,
-0.721210301
383-0.128187872E-1,
-0.465155274,
-0.442384660,
-0.721210301,
+1.00000000
384cor
= getCor(cov, upp, stdinv
= 1 / std)
386+1.00000000,
+0.212851346,
+0.680615306,
-0.432556391,
-0.128187863E-1
387+0.212851346,
+1.00000000,
+0.276595175,
-0.176003546,
-0.465155214
388+0.680615306,
+0.276595175,
+1.00000000,
-0.369865298E-1,
-0.442384541
389-0.432556391,
-0.176003546,
-0.369865298E-1,
+1.00000000,
-0.721210301
390-0.128187863E-1,
-0.465155214,
-0.442384541,
-0.721210301,
+1.00000000
393+1.00000000,
+0.212851346,
+0.680615366,
-0.432556361,
-0.128187872E-1
394+0.212851346,
+1.00000000,
+0.276595205,
-0.176003531,
-0.465155274
395+0.680615366,
+0.276595205,
+1.00000000,
-0.369865298E-1,
-0.442384660
396-0.432556361,
-0.176003531,
-0.369865298E-1,
+1.00000000,
-0.721210301
397-0.128187872E-1,
-0.465155274,
-0.442384660,
-0.721210301,
+1.00000000
398cor
= getCor(cov, low, stdinv
= 1 / std)
400+1.00000000,
+0.212851346,
+0.680615306,
-0.432556391,
-0.128187863E-1
401+0.212851346,
+1.00000000,
+0.276595175,
-0.176003546,
-0.465155214
402+0.680615306,
+0.276595175,
+1.00000000,
-0.369865298E-1,
-0.442384541
403-0.432556391,
-0.176003546,
-0.369865298E-1,
+1.00000000,
-0.721210301
404-0.128187863E-1,
-0.465155214,
-0.442384541,
-0.721210301,
+1.00000000
406+9.00000000,
+2.55421615,
+8.16738415,
-1.29766905,
-0.384563617E-1
407+2.55421615,
+16.0000000,
+4.42552328,
-0.704014122,
-1.86062109
408+8.16738415,
+4.42552328,
+16.0000000,
-0.147946119,
-1.76953864
409-1.29766905,
-0.704014122,
-0.147946119,
+1.00000000,
-0.721210301
410-0.384563617E-1,
-1.86062109,
-1.76953864,
-0.721210301,
+1.00000000
412+9.00000000,
+2.55421615,
+8.16738415,
-1.29766905,
-0.384563617E-1
413+2.55421615,
+16.0000000,
+4.42552328,
-0.704014122,
-1.86062109
414+8.16738415,
+4.42552328,
+16.0000000,
-0.147946119,
-1.76953864
415-1.29766905,
-0.704014122,
-0.147946119,
+1.00000000,
-0.721210301
416-0.384563617E-1,
-1.86062109,
-1.76953864,
-0.721210301,
+1.00000000
424+1.00000000,
+3.00000000,
+2.00000000,
+4.00000000,
+2.00000000,
+3.00000000,
+2.00000000
427+1.00000000,
-2.99995232,
+0.928574502,
-2.10579324,
+1.14359212,
-1.54214978,
-0.607439354E-1
428-2.99995232,
+9.00000000,
-2.80412865,
+6.28827095,
-3.41697836,
+4.60675716,
+0.203933954
429+0.928574502,
-2.80412865,
+4.00000048,
-0.193841815,
+0.973897874,
+1.65067041,
-1.39805067
430-2.10579324,
+6.28827095,
-0.193841815,
+15.9999990,
-0.858241320,
+4.37173319,
-1.73380888
431+1.14359212,
-3.41697836,
+0.973897874,
-0.858241320,
+3.99999976,
-1.01856732,
+1.48593700
432-1.54214978,
+4.60675716,
+1.65067041,
+4.37173319,
-1.01856732,
+8.99999905,
-1.60488367
433-0.607439354E-1,
+0.203933954,
-1.39805067,
-1.73380888,
+1.48593700,
-1.60488367,
+4.00000000
436+1.00000000,
-0.999984145,
+0.464287251,
-0.526448369,
+0.571796119,
-0.514050007,
-0.303719677E-1
437-0.999984145,
+1.00000000,
-0.467354774,
+0.524022639,
-0.569496453,
+0.511861980,
+0.339889936E-1
438+0.464287251,
-0.467354774,
+1.00000000,
-0.242302306E-1,
+0.243474498,
+0.275111765,
-0.349512666
439-0.526448369,
+0.524022639,
-0.242302306E-1,
+1.00000000,
-0.107280187,
+0.364311188,
-0.216726139
440+0.571796119,
-0.569496453,
+0.243474498,
-0.107280187,
+1.00000000,
-0.169761255,
+0.371484280
441-0.514050007,
+0.511861980,
+0.275111765,
+0.364311188,
-0.169761255,
+1.00000000,
-0.267480642
442-0.303719677E-1,
+0.339889936E-1,
-0.349512666,
-0.216726139,
+0.371484280,
-0.267480642,
+1.00000000
443cor
= getCor(cov, upp, stdinv
= 1 / std)
445+1.00000000,
-0.999984145,
+0.464287251,
-0.526448309,
+0.571796060,
-0.514049947,
-0.303719677E-1
446-0.999984145,
+1.00000000,
-0.467354774,
+0.524022579,
-0.569496393,
+0.511861920,
+0.339889936E-1
447+0.464287251,
-0.467354774,
+1.00000000,
-0.242302269E-1,
+0.243474469,
+0.275111735,
-0.349512666
448-0.526448309,
+0.524022579,
-0.242302269E-1,
+1.00000000,
-0.107280165,
+0.364311099,
-0.216726109
449+0.571796060,
-0.569496393,
+0.243474469,
-0.107280165,
+1.00000000,
-0.169761226,
+0.371484250
450-0.514049947,
+0.511861920,
+0.275111735,
+0.364311099,
-0.169761226,
+1.00000000,
-0.267480612
451-0.303719677E-1,
+0.339889936E-1,
-0.349512666,
-0.216726109,
+0.371484250,
-0.267480612,
+1.00000000
454+1.00000000,
-0.999984145,
+0.464287251,
-0.526448369,
+0.571796119,
-0.514050007,
-0.303719677E-1
455-0.999984145,
+1.00000000,
-0.467354774,
+0.524022639,
-0.569496453,
+0.511861980,
+0.339889936E-1
456+0.464287251,
-0.467354774,
+1.00000000,
-0.242302306E-1,
+0.243474498,
+0.275111765,
-0.349512666
457-0.526448369,
+0.524022639,
-0.242302306E-1,
+1.00000000,
-0.107280187,
+0.364311188,
-0.216726139
458+0.571796119,
-0.569496453,
+0.243474498,
-0.107280187,
+1.00000000,
-0.169761255,
+0.371484280
459-0.514050007,
+0.511861980,
+0.275111765,
+0.364311188,
-0.169761255,
+1.00000000,
-0.267480642
460-0.303719677E-1,
+0.339889936E-1,
-0.349512666,
-0.216726139,
+0.371484280,
-0.267480642,
+1.00000000
461cor
= getCor(cov, low, stdinv
= 1 / std)
463+1.00000000,
-0.999984145,
+0.464287251,
-0.526448309,
+0.571796060,
-0.514049947,
-0.303719677E-1
464-0.999984145,
+1.00000000,
-0.467354774,
+0.524022579,
-0.569496393,
+0.511861920,
+0.339889936E-1
465+0.464287251,
-0.467354774,
+1.00000000,
-0.242302269E-1,
+0.243474469,
+0.275111735,
-0.349512666
466-0.526448309,
+0.524022579,
-0.242302269E-1,
+1.00000000,
-0.107280165,
+0.364311099,
-0.216726109
467+0.571796060,
-0.569496393,
+0.243474469,
-0.107280165,
+1.00000000,
-0.169761226,
+0.371484250
468-0.514049947,
+0.511861920,
+0.275111735,
+0.364311099,
-0.169761226,
+1.00000000,
-0.267480612
469-0.303719677E-1,
+0.339889936E-1,
-0.349512666,
-0.216726109,
+0.371484250,
-0.267480612,
+1.00000000
471+1.00000000,
-2.99995232,
+0.928574502,
-2.10579348,
+1.14359224,
-1.54215002,
-0.607439354E-1
472-2.99995232,
+9.00000000,
-2.80412865,
+6.28827190,
-3.41697884,
+4.60675764,
+0.203933954
473+0.928574502,
-2.80412865,
+4.00000000,
-0.193841845,
+0.973897994,
+1.65067053,
-1.39805067
474-2.10579348,
+6.28827190,
-0.193841845,
+16.0000000,
-0.858241498,
+4.37173414,
-1.73380911
475+1.14359224,
-3.41697884,
+0.973897994,
-0.858241498,
+4.00000000,
-1.01856756,
+1.48593712
476-1.54215002,
+4.60675764,
+1.65067053,
+4.37173414,
-1.01856756,
+9.00000000,
-1.60488391
477-0.607439354E-1,
+0.203933954,
-1.39805067,
-1.73380911,
+1.48593712,
-1.60488391,
+4.00000000
479+1.00000000,
-2.99995232,
+0.928574502,
-2.10579348,
+1.14359224,
-1.54215002,
-0.607439354E-1
480-2.99995232,
+9.00000000,
-2.80412865,
+6.28827190,
-3.41697884,
+4.60675764,
+0.203933954
481+0.928574502,
-2.80412865,
+4.00000000,
-0.193841845,
+0.973897994,
+1.65067053,
-1.39805067
482-2.10579348,
+6.28827190,
-0.193841845,
+16.0000000,
-0.858241498,
+4.37173414,
-1.73380911
483+1.14359224,
-3.41697884,
+0.973897994,
-0.858241498,
+4.00000000,
-1.01856756,
+1.48593712
484-1.54215002,
+4.60675764,
+1.65067053,
+4.37173414,
-1.01856756,
+9.00000000,
-1.60488391
485-0.607439354E-1,
+0.203933954,
-1.39805067,
-1.73380911,
+1.48593712,
-1.60488391,
+4.00000000
493+3.00000000,
+2.00000000,
+5.00000000,
+7.00000000,
+7.00000000,
+7.00000000,
+3.00000000
496+9.00000000,
+5.69375610,
+12.5114079,
-11.6907473,
-11.6906328,
+7.42474079,
-3.75195885
497+5.69375610,
+3.99999952,
+9.63698769,
-10.2755671,
-4.53542519,
+1.25932574,
-2.87770605
498+12.5114079,
+9.63698769,
+25.0000019,
-29.9349041,
-3.78695035,
-3.89857817,
-7.74310684
499-11.6907473,
-10.2755671,
-29.9349041,
+48.9999886,
-2.16257381,
+6.43660259,
+13.1313171
500-11.6906328,
-4.53542519,
-3.78695035,
-2.16257381,
+48.9999886,
-37.4038734,
+1.04546726
501+7.42474079,
+1.25932574,
-3.89857817,
+6.43660259,
-37.4038734,
+49.0000076,
+1.09809399
502-3.75195885,
-2.87770605,
-7.74310684,
+13.1313171,
+1.04546726,
+1.09809399,
+9.00000000
505+1.00000000,
+0.948959470,
+0.834093928,
-0.556702375,
-0.556696892,
+0.353559077,
-0.416884333
506+0.948959470,
+1.00000000,
+0.963698924,
-0.733969271,
-0.323959023,
+0.899518430E-1,
-0.479617745
507+0.834093928,
+0.963698924,
+1.00000000,
-0.855283082,
-0.108198598,
-0.111387938,
-0.516207159
508-0.556702375,
-0.733969271,
-0.855283082,
+1.00000000,
-0.441341698E-1,
+0.131359249,
+0.625300944
509-0.556696892,
-0.323959023,
-0.108198598,
-0.441341698E-1,
+1.00000000,
-0.763344407,
+0.497841649E-1
510+0.353559077,
+0.899518430E-1,
-0.111387938,
+0.131359249,
-0.763344407,
+1.00000000,
+0.522901863E-1
511-0.416884333,
-0.479617745,
-0.516207159,
+0.625300944,
+0.497841649E-1,
+0.522901863E-1,
+1.00000000
512cor
= getCor(cov, upp, stdinv
= 1 / std)
514+1.00000000,
+0.948959351,
+0.834093928,
-0.556702316,
-0.556696832,
+0.353559107,
-0.416884333
515+0.948959351,
+1.00000000,
+0.963698804,
-0.733969092,
-0.323958963,
+0.899518430E-1,
-0.479617685
516+0.834093928,
+0.963698804,
+1.00000000,
-0.855283022,
-0.108198591,
-0.111387953,
-0.516207159
517-0.556702316,
-0.733969092,
-0.855283022,
+1.00000000,
-0.441341624E-1,
+0.131359249,
+0.625300884
518-0.556696832,
-0.323958963,
-0.108198591,
-0.441341624E-1,
+1.00000000,
-0.763344407,
+0.497841612E-1
519+0.353559107,
+0.899518430E-1,
-0.111387953,
+0.131359249,
-0.763344407,
+1.00000000,
+0.522901937E-1
520-0.416884333,
-0.479617685,
-0.516207159,
+0.625300884,
+0.497841612E-1,
+0.522901937E-1,
+1.00000000
523+1.00000000,
+0.948959470,
+0.834093928,
-0.556702375,
-0.556696892,
+0.353559077,
-0.416884333
524+0.948959470,
+1.00000000,
+0.963698924,
-0.733969271,
-0.323959023,
+0.899518430E-1,
-0.479617745
525+0.834093928,
+0.963698924,
+1.00000000,
-0.855283082,
-0.108198598,
-0.111387938,
-0.516207159
526-0.556702375,
-0.733969271,
-0.855283082,
+1.00000000,
-0.441341698E-1,
+0.131359249,
+0.625300944
527-0.556696892,
-0.323959023,
-0.108198598,
-0.441341698E-1,
+1.00000000,
-0.763344407,
+0.497841649E-1
528+0.353559077,
+0.899518430E-1,
-0.111387938,
+0.131359249,
-0.763344407,
+1.00000000,
+0.522901863E-1
529-0.416884333,
-0.479617745,
-0.516207159,
+0.625300944,
+0.497841649E-1,
+0.522901863E-1,
+1.00000000
530cor
= getCor(cov, low, stdinv
= 1 / std)
532+1.00000000,
+0.948959351,
+0.834093928,
-0.556702316,
-0.556696832,
+0.353559107,
-0.416884333
533+0.948959351,
+1.00000000,
+0.963698804,
-0.733969092,
-0.323958963,
+0.899518430E-1,
-0.479617685
534+0.834093928,
+0.963698804,
+1.00000000,
-0.855283022,
-0.108198591,
-0.111387953,
-0.516207159
535-0.556702316,
-0.733969092,
-0.855283022,
+1.00000000,
-0.441341624E-1,
+0.131359249,
+0.625300884
536-0.556696832,
-0.323958963,
-0.108198591,
-0.441341624E-1,
+1.00000000,
-0.763344407,
+0.497841612E-1
537+0.353559107,
+0.899518430E-1,
-0.111387953,
+0.131359249,
-0.763344407,
+1.00000000,
+0.522901937E-1
538-0.416884333,
-0.479617685,
-0.516207159,
+0.625300884,
+0.497841612E-1,
+0.522901937E-1,
+1.00000000
540+9.00000000,
+5.69375706,
+12.5114088,
-11.6907501,
-11.6906347,
+7.42474079,
-3.75195909
541+5.69375706,
+4.00000000,
+9.63698959,
-10.2755699,
-4.53542614,
+1.25932574,
-2.87770653
542+12.5114088,
+9.63698959,
+25.0000000,
-29.9349079,
-3.78695083,
-3.89857793,
-7.74310732
543-11.6907501,
-10.2755699,
-29.9349079,
+49.0000000,
-2.16257429,
+6.43660307,
+13.1313200
544-11.6906347,
-4.53542614,
-3.78695083,
-2.16257429,
+49.0000000,
-37.4038773,
+1.04546750
545+7.42474079,
+1.25932574,
-3.89857793,
+6.43660307,
-37.4038773,
+49.0000000,
+1.09809387
546-3.75195909,
-2.87770653,
-7.74310732,
+13.1313200,
+1.04546750,
+1.09809387,
+9.00000000
548+9.00000000,
+5.69375706,
+12.5114088,
-11.6907501,
-11.6906347,
+7.42474079,
-3.75195909
549+5.69375706,
+4.00000000,
+9.63698959,
-10.2755699,
-4.53542614,
+1.25932574,
-2.87770653
550+12.5114088,
+9.63698959,
+25.0000000,
-29.9349079,
-3.78695083,
-3.89857793,
-7.74310732
551-11.6907501,
-10.2755699,
-29.9349079,
+49.0000000,
-2.16257429,
+6.43660307,
+13.1313200
552-11.6906347,
-4.53542614,
-3.78695083,
-2.16257429,
+49.0000000,
-37.4038773,
+1.04546750
553+7.42474079,
+1.25932574,
-3.89857793,
+6.43660307,
-37.4038773,
+49.0000000,
+1.09809387
554-3.75195909,
-2.87770653,
-7.74310732,
+13.1313200,
+1.04546750,
+1.09809387,
+9.00000000
563ndim
= 2; nsam
= 10; dim
= 2
564sample
= reshape(
getUnifRand(
1,
20, ndim
* nsam), shape
= [ndim, nsam], order
= [
2,
1])
566+1.100000E+01,
+1.200000E+01,
+5.000000E+00,
+3.000000E+00,
+1.100000E+01,
+1.500000E+01,
+2.000000E+01,
+8.000000E+00,
+1.600000E+01,
+9.000000E+00
567+2.000000E+00,
+1.000000E+01,
+1.000000E+00,
+1.000000E+01,
+3.000000E+00,
+2.000000E+01,
+3.000000E+00,
+1.800000E+01,
+1.000000E+00,
+4.000000E+00
570+1.100000E+01,
+7.200000E+00
573+1.000000E+00,
-8.017607E-02
574-8.017607E-02,
+1.000000E+00
576'Compute the sample correlation along the first dimension.'
579cor
= getCor(
transpose(sample), dim)
581+1.000000E+00,
-8.017607E-02
582-8.017607E-02,
+1.000000E+00
584'Compute the full sample correlation for a pair of time series.'
586cor(
1,
1)
= getCor(sample(
1,:), sample(
2,:))
597ndim
= 2; nsam
= 10; dim
= 2
598sample
= reshape(
getUnifRand(
1,
20, ndim
* nsam), shape
= [ndim, nsam], order
= [
2,
1])
600+1.400000E+01,
+1.700000E+01,
+2.000000E+01,
+1.700000E+01,
+9.000000E+00,
+1.900000E+01,
+1.600000E+01,
+9.000000E+00,
+2.000000E+01,
+3.000000E+00
601+1.300000E+01,
+1.000000E+00,
+4.000000E+00,
+3.000000E+00,
+1.300000E+01,
+7.000000E+00,
+1.500000E+01,
+1.000000E+01,
+1.400000E+01,
+1.600000E+01
605+5,
+1,
+2,
+8,
+8,
+2,
+7,
+4,
+6,
+7
606call setMean(mean, sample, dim, iweight, iweisum)
608+13.2399998,
+11.1399994
613+5,
+1,
+2,
+8,
+8,
+2,
+7,
+4,
+6,
+7
614call setMean(mean, sample, dim, rweight, rweisum)
616+1.324000E+01,
+1.114000E+01
624cor
= getCor(sample, dim, iweight)
626+1.000000E+00,
-4.658200E-01
627-4.658200E-01,
+1.000000E+00
629'Compute the sample correlation along the first dimension.'
632cor
= getCor(
transpose(sample), dim, iweight)
634+1.000000E+00,
-4.658199E-01
635-4.658199E-01,
+1.000000E+00
637'Compute the full sample correlation for a pair of time series.'
639cor(
1,
1)
= getCor(sample(
1,:), sample(
2,:), iweight)
649cor
= getCor(sample, dim, rweight)
651+1.000000E+00,
-4.658200E-01
652-4.658200E-01,
+1.000000E+00
654'Compute the sample correlation along the first dimension.'
657cor
= getCor(
transpose(sample), dim, rweight)
659+1.000000E+00,
-4.658199E-01
660-4.658199E-01,
+1.000000E+00
662'Compute the full sample correlation for a pair of time series.'
664cor(
1,
1)
= getCor(sample(
1,:), sample(
2,:), rweight)