ParaMonte Fortran 2.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation.
pm_distExp::setExpRand Interface Reference

Return a scalar (or array of arbitrary rank of) random value(s) from the Exponential distribution, optionally with the specified input location and scale parameters mu, sigma.
More...

Detailed Description

Return a scalar (or array of arbitrary rank of) random value(s) from the Exponential distribution, optionally with the specified input location and scale parameters mu, sigma.

See the documentation of pm_distExp for more details.

Parameters
[in,out]rand: The input/output scalar (or array of the same rank, shape, and size as other array-like arguments), of
  1. type real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128),
that,
  1. must contain uniformly-distributed random value(s) in range \([0, 1)\) on input, and
  2. will contain exponentially-distributed random value(s) in range \([0, +\infty)\) on output.
The uniformly-distributed random value(s) can be readily obtained via
  1. the Fortran intrinsic procedure random_number() or,
  2. via getUnifRand().
Supplying this argument as an input ensures the purity of the procedures, allowing further compiler optimizations.
[in]sigma: The input scalar (or array of the same rank, shape, and size as other array-like arguments), of the same type and kind as rand, representing the scale parameter of the distribution.
(optional, default = 1..)
[in]mu: The input scalar (or array of the same rank, shape, and size as other array-like arguments), of the same type and kind as rand, representing the location parameter of the distribution.
(optional, default = 0. It can be present if and only if sigma is also present.)


Possible calling interfaces

call setExpRand(rand)
call setExpRand(rand, sigma)
call setExpRand(rand, sigma, mu)
Return a scalar (or array of arbitrary rank of) random value(s) from the Exponential distribution,...
This module contains classes and procedures for computing various statistical quantities related to t...
Definition: pm_distExp.F90:112
Warning
The condition 0 < sigma must hold for the corresponding input arguments.
The condition 0 <= rand < 1 must hold for the corresponding input arguments.
These conditions are verified only if the library is built with the preprocessor macro CHECK_ENABLED=1.
The pure procedure(s) documented herein become impure when the ParaMonte library is compiled with preprocessor macro CHECK_ENABLED=1.
By default, these procedures are pure in release build and impure in debug and testing builds.
Remarks
The procedures under discussion are elemental.
See also
getExpRand


Example usage

1program example
2
3 use pm_kind, only: SK, IK
4 use pm_io, only: display_type
5 use pm_distExp, only: setExpRand
6 use pm_distUnif, only: setUnifRand
7
8 implicit none
9
10 integer(IK) , parameter :: NP = 5_IK
11 real :: rand(NP,NP)
12
13 type(display_type) :: disp
14 disp = display_type(file = "main.out.F90")
15
16
17 call disp%show("call setUnifRand(rand(1,1))")
18 call setUnifRand(rand(1,1))
19 call disp%show("call setExpRand(rand(1,1))")
20 call setExpRand(rand(1,1))
21 call disp%show("rand(1,1)")
22 call disp%show( rand(1,1) )
23 call disp%skip()
24
25 call disp%skip()
26 call disp%show("!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
27 call disp%show("! Generate a scalar real random number.")
28 call disp%show("!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
29 call disp%skip()
30
31 call disp%show("call setUnifRand(rand(1,1))")
32 call setUnifRand(rand(1,1))
33 call disp%show("call setExpRand(rand(1,1), sigma = 2.) ! random real number with the Exponential mean 2..")
34 call setExpRand(rand(1,1), sigma = 2.)
35 call disp%show("rand(1,1)")
36 call disp%show( rand(1,1) )
37 call disp%skip()
38
39 call disp%skip()
40 call disp%show("!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
41 call disp%show("! Generate a vector of real random numbers.")
42 call disp%show("!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
43 call disp%skip()
44
45 call disp%show("call setUnifRand(rand(:,1))")
46 call setUnifRand(rand(:,1))
47 call disp%show("call setExpRand(rand(:,1)) ! random real vector with the default Exponential mean (1,1).")
48 call setExpRand(rand(:,1))
49 call disp%show("rand(:,1)")
50 call disp%show( rand(:,1) )
51 call disp%skip()
52
53 call disp%show("call setUnifRand(rand(:,1))")
54 call setUnifRand(rand(:,1))
55 call disp%show("call setExpRand(rand(:,1), sigma = 10.) ! random real vector with mean 10..")
56 call setExpRand(rand(:,1), sigma = 10.)
57 call disp%show("rand(:,1)")
58 call disp%show( rand(:,1) )
59 call disp%skip()
60
61 call disp%skip()
62 call disp%show("!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
63 call disp%show("! Generate a matrix of real random numbers.")
64 call disp%show("!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
65 call disp%skip()
66
67 call disp%show("call setUnifRand(rand)")
68 call setUnifRand(rand)
69 call disp%show("call setExpRand(rand) ! random matrix with the default Exponential mean 1..")
70 call setExpRand(rand)
71 call disp%show("rand")
72 call disp%show( rand )
73 call disp%skip()
74
75 call disp%show("call setUnifRand(rand)")
76 call setUnifRand(rand)
77 call disp%show("call setExpRand(rand, sigma = 100.) ! random real vector with mean 100..")
78 call setExpRand(rand, sigma = 100.)
79 call disp%show("rand")
80 call disp%show( rand )
81 call disp%skip()
82
83 block
84 integer :: fileUnit, i
85 real :: rand(2)
86 open(newunit = fileUnit, file = "setExpRand.RK.txt")
87 do i = 1, 1000
88 call setUnifRand(rand)
89 call setExpRand(rand, sigma = [3., 2.], mu = [0., 2.])
90 write(fileUnit,"(2(g0,:,', '))") rand
91 end do
92 close(fileUnit)
93 end block
94
95end program example
Return a uniform random scalar or contiguous array of arbitrary rank of randomly uniformly distribute...
This is a generic method of the derived type display_type with pass attribute.
Definition: pm_io.F90:11726
This is a generic method of the derived type display_type with pass attribute.
Definition: pm_io.F90:11508
This module contains classes and procedures for computing various statistical quantities related to t...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
Definition: pm_io.F90:252
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
Definition: pm_io.F90:11393
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
Definition: pm_kind.F90:268
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
Definition: pm_kind.F90:540
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
Definition: pm_kind.F90:539
Generate and return an object of type display_type.
Definition: pm_io.F90:10282

Example Unix compile command via Intel ifort compiler
1#!/usr/bin/env sh
2rm main.exe
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Example Windows Batch compile command via Intel ifort compiler
1del main.exe
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
4main.exe

Example Unix / MinGW compile command via GNU gfortran compiler
1#!/usr/bin/env sh
2rm main.exe
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Example output
1call setUnifRand(rand(1,1))
2call setExpRand(rand(1,1))
3rand(1,1)
4+0.251435816
5
6
7!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8! Generate a scalar real random number.
9!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10
11call setUnifRand(rand(1,1))
12call setExpRand(rand(1,1), sigma = 2.) ! random real number with the Exponential mean 2..
13rand(1,1)
14+3.86267900
15
16
17!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18! Generate a vector of real random numbers.
19!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20
21call setUnifRand(rand(:,1))
22call setExpRand(rand(:,1)) ! random real vector with the default Exponential mean (1,1).
23rand(:,1)
24+0.552730821E-1, +3.93697023, +0.421984613, +0.864686728, +0.738922477
25
26call setUnifRand(rand(:,1))
27call setExpRand(rand(:,1), sigma = 10.) ! random real vector with mean 10..
28rand(:,1)
29+11.0956306, +18.1514454, +20.0629902, +23.4371872, +7.77758503
30
31
32!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33! Generate a matrix of real random numbers.
34!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35
36call setUnifRand(rand)
37call setExpRand(rand) ! random matrix with the default Exponential mean 1..
38rand
39+0.899216413, +2.62834001, +0.573873073E-1, +0.321793169, +0.404808074
40+2.64986062, +0.577117980, +0.101723067, +0.104271762, +0.165630266
41+0.317576170, +3.60960054, +0.329711348, +1.82449853, +0.157025144
42+0.648605973E-1, +0.137604848, +2.29776311, +0.103087291, +2.29863787
43+0.836691558, +0.534402609, +0.244067505, +1.87467337, +3.00282621
44
45call setUnifRand(rand)
46call setExpRand(rand, sigma = 100.) ! random real vector with mean 100..
47rand
48+15.1922550, +100.378540, +31.0162067, +10.2884789, +149.706528
49+32.8152275, +165.936783, +73.0224991, +13.9237747, +6.38782883
50+2.70236850, +0.540984035, +255.904465, +59.2662621, +28.0014763
51+150.235168, +66.6014328, +0.625269338E-1, +201.909302, +110.492279
52+53.3583527, +104.062950, +130.024673, +192.447845, +33.1473427
53
54

Postprocessing of the example output
1#!/usr/bin/env python
2
3import matplotlib.pyplot as plt
4import pandas as pd
5import numpy as np
6import glob
7import sys
8
9linewidth = 2
10fontsize = 17
11
12marker ={ "CK" : "-"
13 , "IK" : "."
14 , "RK" : "-"
15 }
16xlab = { "CK" : "Random Value ( Real / Imaginary ))"
17 , "IK" : "Random Value ( Integer )"
18 , "RK" : "Random Value ( Real )"
19 }
20legends = [ r"$\sigma, \mu = 2., 2.$"
21 , r"$\sigma = 3.$"
22 ]
23
24for kind in ["IK", "CK", "RK"]:
25
26 pattern = "*." + kind + ".txt"
27 fileList = glob.glob(pattern)
28 if len(fileList) == 1:
29
30 df = pd.read_csv(fileList[0], delimiter = ", ")
31
32 fig = plt.figure(figsize = 1.25 * np.array([6.4, 4.8]), dpi = 200)
33 ax = plt.subplot()
34
35 if kind == "CK":
36 ax.hist ( df.values[:, 0]
37 , bins = 30
38 , histtype = "stepfilled"
39 , density = True
40 , alpha = 0.7
41 )
42 ax.hist ( df.values[:, 1]
43 , bins = 30
44 , histtype = "stepfilled"
45 , density = True
46 , alpha = 0.7
47 )
48 else:
49 ax.hist ( df.values[:,0:2]
50 , bins = 50
51 , histtype = "stepfilled"
52 , density = True
53 , alpha = 0.7
54 )
55 ax.legend ( legends
56 , fontsize = fontsize
57 )
58
59 plt.xticks(fontsize = fontsize - 2)
60 plt.yticks(fontsize = fontsize - 2)
61 ax.set_xlabel(xlab[kind], fontsize = 17)
62 ax.set_ylabel("Density", fontsize = 17)
63 ax.set_title("Histogram of {} Exponential random numbers\nMean = {}".format(len(df.values), np.round(np.mean(np.double(df.values), axis = 0), 2)), fontsize = fontsize)
64 #ax.set_yscale("log")
65 #ax.set_xscale("log")
66
67 plt.grid(visible = True, which = "both", axis = "both", color = "0.85", linestyle = "-")
68 ax.tick_params(axis = "y", which = "minor")
69 ax.tick_params(axis = "x", which = "minor")
70 ax.set_axisbelow(True)
71
72 plt.tight_layout()
73 plt.savefig(fileList[0].replace(".txt",".png"))
74
75 elif len(fileList) > 1:
76
77 sys.exit("Ambiguous file list exists.")

Visualization of the example output
Test:
test_pm_distExp
Todo:
Critical Priority: The Intel ifort bug (described below) appears to have been resolved in ifort 2021.4.
Therefore, once TACC and other relevant supercomputers have ifort >=2021.4 installed, the bug workaround must be resolved.
Bug:

Status: possibly Resolved in Intel Classic Fortran Compiler ifort version 2021.4
Source: Intel Classic Fortran Compiler ifort version 2021.2
Description: The Intel Classic Fortran Compiler ifort version 2021.2 yields an ICE for passing complex components to random_number() or log().
This appears to have been fixed in Intel Classic Fortran Compiler ifort version 2021.4.

Remedy (as of ParaMonte Library version 1.5): For now, the implementations are kept separately, since the installation of the new Intel Classic Fortran Compiler ifort versions on supercomputers often lags.

Remedy (as of ParaMonte Library version Oct, 2022): The complex interface of the routines is now deprecated and removed.


Final Remarks


If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.

  1. If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
  2. If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.

This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.

Author:
Amir Shahmoradi, Oct 16, 2009, 11:14 AM, Michigan

Definition at line 1177 of file pm_distExp.F90.


The documentation for this interface was generated from the following file: