Return the full or a subset of the Euclidean (squared) distance matrix of the input set of npnt
points in ndim
dimensions.
More...
Return the full or a subset of the Euclidean (squared) distance matrix of the input set of npnt
points in ndim
dimensions.
- Parameters
-
[in] | pack | : The input scalar that can be:
-
the constant rdpack or an object of type rdpack_type, implying the use of Rectangular Default Packing format for the output matrix.
|
[in] | subset | : The input scalar that can be:
-
the constant uppLowDia or an object of type uppLowDia_type, indicating that the output
distance must contain the full distance matrix of shape (1:npnt, 1:npnt) including the zero-valued diagonals.
-
the constant uppLow or an object of type uppLow_type, indicating that the output
distance must exclude the zero-valued diagonals from the distance matrix yielding a distance matrix of shape (1:npnt - 1, 1:npnt) .
Motivation: The zero-valued diagonal elements of the distance matrix are are frequently troubling for subsequent vector operations on the output distance matrix.
Such vector operations include but are not limited to finding the extrema of distances, for example, the nearest and farthest neighbors.
This subset value offers a fast convenient method of excluding self-distance values from the output distance matrix such that each column (1:npnt-1 , i) of the distance matrix contains only the distances of point(1:ndim, i) with all other npnt - 1 points in point .
For example, finding the nearest neighbor of the points using the output distance matrix would be as simple as minval(distance, 1) .
Finding the actual index of the point that is the nearest neighbor to each point would be slightly more involved as a two-step process:
nn1loc(1 : npnt) = minloc(distance(1 : npnt - 1, 1 : npnt), 1)
nn1loc = merge(nn1loc, nn1loc + 1, getRange(1, npnt) <= nn1loc)
where nn1loc is the vector of indices of the first nearest neighbors such that point(:,nn1loc(i)) is the nearest neighbor to point(:,i) .
|
[in] | point | : The input contiguous matrix of shape (1:ndim, 1:npnt) of,
-
type
real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128),
containing npnt points in the ndim -dimensional Euclidean space whose distances with respect to each other must be computed and returned.
|
[in] | method | : The input scalar that can be,
-
the constant euclid or an object of type euclid_type, implying that all distance calculations must be done without undue numerical overflow.
This option is computationally the most expensive method.
-
the constant euclidu or an object of type euclidu_type, implying that all distance calculations must be without runtime checks for numerical overflow.
This option is computationally faster than the euclid method.
-
the constant euclidsq or an object of type euclidsq_type implying that the squared values of all distance calculations must be returned without runtime checks for numerical overflow.
This option is computationally the fastest approach to constructing the distance matrix because it avoid costly sqrt() operations and runtime overflow checks.
(optional, default = euclid) |
- Returns
distance
: The output contiguous
array of rank 2
of the same type and kind as the input argument point
.
On output, it contains the requested subset
of the (squared) distance matrix in the specified packing format pack
.
Any element of distance
that is not included in the specified subset
will remain intact, if any such element exists.
Possible calling interfaces ⛓
distance(
1:npnt,
1:npnt)
= getDisMatEuclid(pack, subset, point(
1:ndim,
1:npnt), method)
distance(
1:npnt
-1,
1:npnt)
= getDisMatEuclid(pack, subset, point(
1:ndim,
1:npnt), method)
!
Return the full or a subset of the Euclidean (squared) distance matrix of the input set of npnt point...
This module contains procedures and generic interfaces for computing the Euclidean norm of a single p...
- Warning
- The condition
size(point, 1) == size(point, 2)
must hold for the corresponding input arguments.
The condition shape(distance) == [size(point, 1), size(point, 1)] .or. .not. same_type_as(subset, uppLowDia)
must hold for the corresponding input arguments.
The condition shape(distance) == [size(point, 1) - 1, size(point, 1)] .or. .not. same_type_as(subset, uppLow)
must hold for the corresponding input arguments.
These conditions are verified only if the library is built with the preprocessor macro CHECK_ENABLED=1
.
-
The
pure
procedure(s) documented herein become impure
when the ParaMonte library is compiled with preprocessor macro CHECK_ENABLED=1
.
By default, these procedures are pure
in release
build and impure
in debug
and testing
builds.
- Developer Remark:
- The input arguments
pack, subset
appear first for a good reason: To allow the possibility of adding of similarly-named arguments for the input point
matrix.
- See also
- euclid
euclidu
euclidsq
euclid_type
euclidu_type
euclidsq_type
getDisEuclid
setDisEuclid
getDisMatEuclid
setDisMatEuclid
Example usage ⛓
12 integer(IK) :: ndim, npnt, itry, ntry
= 5
13 type(display_type) :: disp
17 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
18 call disp%show(
"! Compute the distance matrix of a set of points.")
19 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
23 real(RKG),
allocatable :: distance(:,:), point(:,:)
26 call disp%show(
"ndim = getUnifRand(1, 3); npnt = getUnifRand(1, 7)")
30 call disp%show(
"point = getUnifRand(1, 10, ndim, npnt)")
34 call disp%show(
"distance = getDisMatEuclid(point)")
38 call disp%show(
"distance = getDisMatEuclid(rdpack, uppLow, point) ! drop the zero-valued diagonal elements of the distance matrix.")
42 call disp%show(
"distance = getDisMatEuclid(point, euclid)")
46 call disp%show(
"distance = getDisMatEuclid(rdpack, uppLow, point, euclid) ! drop the zero-valued diagonal elements of the distance matrix.")
50 call disp%show(
"distance = getDisMatEuclid(point, euclidu)")
54 call disp%show(
"distance = getDisMatEuclid(rdpack, uppLow, point, euclidsq) ! drop the zero-valued diagonal elements of the distance matrix.")
58 call disp%show(
"distance = getDisMatEuclid(point, euclidsq)")
62 call disp%show(
"distance = getDisMatEuclid(rdpack, uppLow, point, euclidsq) ! drop the zero-valued diagonal elements of the distance matrix.")
Allocate or resize (shrink or expand) an input allocatable scalar string or array of rank 1....
Generate and return a scalar or a contiguous array of rank 1 of length s1 of randomly uniformly distr...
This is a generic method of the derived type display_type with pass attribute.
This is a generic method of the derived type display_type with pass attribute.
This module contains procedures and generic interfaces for resizing allocatable arrays of various typ...
This module contains classes and procedures for computing various statistical quantities related to t...
type(euclidu_type), parameter euclidu
This is a scalar parameter object of type euclidu_typethat is exclusively used to request unsafe meth...
type(euclid_type), parameter euclid
This is a scalar parameter object of type euclid_type that is exclusively used to request safe method...
type(euclidsq_type), parameter euclidsq
This is a scalar parameter object of type euclidsq_typethat is exclusively used to request computing ...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
integer, parameter RKH
The scalar integer constant of intrinsic default kind, representing the highest-precision real kind t...
integer, parameter RKS
The single-precision real kind in Fortran mode. On most platforms, this is an 32-bit real kind.
Generate and return an object of type display_type.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example output ⛓
12+9.00000000,
+8.00000000,
+1.00000000,
+5.00000000,
+2.00000000
15+0.00000000,
+1.00000000,
+8.00000000,
+4.00000000,
+7.00000000
16+1.00000000,
+0.00000000,
+7.00000000,
+3.00000000,
+6.00000000
17+8.00000000,
+7.00000000,
+0.00000000,
+4.00000000,
+1.00000000
18+4.00000000,
+3.00000000,
+4.00000000,
+0.00000000,
+3.00000000
19+7.00000000,
+6.00000000,
+1.00000000,
+3.00000000,
+0.00000000
22+1.00000000,
+1.00000000,
+8.00000000,
+4.00000000,
+7.00000000
23+8.00000000,
+7.00000000,
+7.00000000,
+3.00000000,
+6.00000000
24+4.00000000,
+3.00000000,
+4.00000000,
+4.00000000,
+1.00000000
25+7.00000000,
+6.00000000,
+1.00000000,
+3.00000000,
+3.00000000
28+0.00000000,
+1.00000000,
+8.00000000,
+4.00000000,
+7.00000000
29+1.00000000,
+0.00000000,
+7.00000000,
+3.00000000,
+6.00000000
30+8.00000000,
+7.00000000,
+0.00000000,
+4.00000000,
+1.00000000
31+4.00000000,
+3.00000000,
+4.00000000,
+0.00000000,
+3.00000000
32+7.00000000,
+6.00000000,
+1.00000000,
+3.00000000,
+0.00000000
35+1.00000000,
+1.00000000,
+8.00000000,
+4.00000000,
+7.00000000
36+8.00000000,
+7.00000000,
+7.00000000,
+3.00000000,
+6.00000000
37+4.00000000,
+3.00000000,
+4.00000000,
+4.00000000,
+1.00000000
38+7.00000000,
+6.00000000,
+1.00000000,
+3.00000000,
+3.00000000
41+0.00000000,
+1.00000000,
+8.00000000,
+4.00000000,
+7.00000000
42+1.00000000,
+0.00000000,
+7.00000000,
+3.00000000,
+6.00000000
43+8.00000000,
+7.00000000,
+0.00000000,
+4.00000000,
+1.00000000
44+4.00000000,
+3.00000000,
+4.00000000,
+0.00000000,
+3.00000000
45+7.00000000,
+6.00000000,
+1.00000000,
+3.00000000,
+0.00000000
48+1.00000000,
+1.00000000,
+64.0000000,
+16.0000000,
+49.0000000
49+64.0000000,
+49.0000000,
+49.0000000,
+9.00000000,
+36.0000000
50+16.0000000,
+9.00000000,
+16.0000000,
+16.0000000,
+1.00000000
51+49.0000000,
+36.0000000,
+1.00000000,
+9.00000000,
+9.00000000
54+0.00000000,
+1.00000000,
+64.0000000,
+16.0000000,
+49.0000000
55+1.00000000,
+0.00000000,
+49.0000000,
+9.00000000,
+36.0000000
56+64.0000000,
+49.0000000,
+0.00000000,
+16.0000000,
+1.00000000
57+16.0000000,
+9.00000000,
+16.0000000,
+0.00000000,
+9.00000000
58+49.0000000,
+36.0000000,
+1.00000000,
+9.00000000,
+0.00000000
61+1.00000000,
+1.00000000,
+64.0000000,
+16.0000000,
+49.0000000
62+64.0000000,
+49.0000000,
+49.0000000,
+9.00000000,
+36.0000000
63+16.0000000,
+9.00000000,
+16.0000000,
+16.0000000,
+1.00000000
64+49.0000000,
+36.0000000,
+1.00000000,
+9.00000000,
+9.00000000
72+4.00000000,
+3.00000000,
+9.00000000,
+9.00000000,
+9.00000000
73+7.00000000,
+2.00000000,
+8.00000000,
+7.00000000,
+1.00000000
74+10.0000000,
+8.00000000,
+5.00000000,
+5.00000000,
+4.00000000
77+0.00000000,
+5.47722530,
+7.14142847,
+7.07106781,
+9.84885788
78+5.47722530,
+0.00000000,
+9.00000000,
+8.36660004,
+7.28011036
79+7.14142847,
+9.00000000,
+0.00000000,
+1.00000000,
+7.07106781
80+7.07106781,
+8.36660004,
+1.00000000,
+0.00000000,
+6.08276224
81+9.84885788,
+7.28011036,
+7.07106781,
+6.08276224,
+0.00000000
84+5.47722530,
+5.47722530,
+7.14142847,
+7.07106781,
+9.84885788
85+7.14142847,
+9.00000000,
+9.00000000,
+8.36660004,
+7.28011036
86+7.07106781,
+8.36660004,
+1.00000000,
+1.00000000,
+7.07106781
87+9.84885788,
+7.28011036,
+7.07106781,
+6.08276224,
+6.08276224
90+0.00000000,
+5.47722530,
+7.14142847,
+7.07106781,
+9.84885788
91+5.47722530,
+0.00000000,
+9.00000000,
+8.36660004,
+7.28011036
92+7.14142847,
+9.00000000,
+0.00000000,
+1.00000000,
+7.07106781
93+7.07106781,
+8.36660004,
+1.00000000,
+0.00000000,
+6.08276224
94+9.84885788,
+7.28011036,
+7.07106781,
+6.08276224,
+0.00000000
97+5.47722530,
+5.47722530,
+7.14142847,
+7.07106781,
+9.84885788
98+7.14142847,
+9.00000000,
+9.00000000,
+8.36660004,
+7.28011036
99+7.07106781,
+8.36660004,
+1.00000000,
+1.00000000,
+7.07106781
100+9.84885788,
+7.28011036,
+7.07106781,
+6.08276224,
+6.08276224
103+0.00000000,
+5.47722578,
+7.14142847,
+7.07106781,
+9.84885788
104+5.47722578,
+0.00000000,
+9.00000000,
+8.36660004,
+7.28010988
105+7.14142847,
+9.00000000,
+0.00000000,
+1.00000000,
+7.07106781
106+7.07106781,
+8.36660004,
+1.00000000,
+0.00000000,
+6.08276272
107+9.84885788,
+7.28010988,
+7.07106781,
+6.08276272,
+0.00000000
110+30.0000000,
+30.0000000,
+51.0000000,
+50.0000000,
+97.0000000
111+51.0000000,
+81.0000000,
+81.0000000,
+70.0000000,
+53.0000000
112+50.0000000,
+70.0000000,
+1.00000000,
+1.00000000,
+50.0000000
113+97.0000000,
+53.0000000,
+50.0000000,
+37.0000000,
+37.0000000
116+0.00000000,
+30.0000000,
+51.0000000,
+50.0000000,
+97.0000000
117+30.0000000,
+0.00000000,
+81.0000000,
+70.0000000,
+53.0000000
118+51.0000000,
+81.0000000,
+0.00000000,
+1.00000000,
+50.0000000
119+50.0000000,
+70.0000000,
+1.00000000,
+0.00000000,
+37.0000000
120+97.0000000,
+53.0000000,
+50.0000000,
+37.0000000,
+0.00000000
123+30.0000000,
+30.0000000,
+51.0000000,
+50.0000000,
+97.0000000
124+51.0000000,
+81.0000000,
+81.0000000,
+70.0000000,
+53.0000000
125+50.0000000,
+70.0000000,
+1.00000000,
+1.00000000,
+50.0000000
126+97.0000000,
+53.0000000,
+50.0000000,
+37.0000000,
+37.0000000
134+8.00000000,
+8.00000000,
+6.00000000,
+8.00000000,
+5.00000000,
+5.00000000
137+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
138+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
139+2.00000000,
+2.00000000,
+0.00000000,
+2.00000000,
+1.00000000,
+1.00000000
140+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
141+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+0.00000000,
+0.00000000
142+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+0.00000000,
+0.00000000
145+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
146+2.00000000,
+2.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
147+0.00000000,
+0.00000000,
+2.00000000,
+2.00000000,
+1.00000000,
+1.00000000
148+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+3.00000000,
+3.00000000
149+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+0.00000000,
+0.00000000
152+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
153+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
154+2.00000000,
+2.00000000,
+0.00000000,
+2.00000000,
+1.00000000,
+1.00000000
155+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
156+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+0.00000000,
+0.00000000
157+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+0.00000000,
+0.00000000
160+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
161+2.00000000,
+2.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
162+0.00000000,
+0.00000000,
+2.00000000,
+2.00000000,
+1.00000000,
+1.00000000
163+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+3.00000000,
+3.00000000
164+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+0.00000000,
+0.00000000
167+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
168+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
169+2.00000000,
+2.00000000,
+0.00000000,
+2.00000000,
+1.00000000,
+1.00000000
170+0.00000000,
+0.00000000,
+2.00000000,
+0.00000000,
+3.00000000,
+3.00000000
171+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+0.00000000,
+0.00000000
172+3.00000000,
+3.00000000,
+1.00000000,
+3.00000000,
+0.00000000,
+0.00000000
175+0.00000000,
+0.00000000,
+4.00000000,
+0.00000000,
+9.00000000,
+9.00000000
176+4.00000000,
+4.00000000,
+4.00000000,
+0.00000000,
+9.00000000,
+9.00000000
177+0.00000000,
+0.00000000,
+4.00000000,
+4.00000000,
+1.00000000,
+1.00000000
178+9.00000000,
+9.00000000,
+1.00000000,
+9.00000000,
+9.00000000,
+9.00000000
179+9.00000000,
+9.00000000,
+1.00000000,
+9.00000000,
+0.00000000,
+0.00000000
182+0.00000000,
+0.00000000,
+4.00000000,
+0.00000000,
+9.00000000,
+9.00000000
183+0.00000000,
+0.00000000,
+4.00000000,
+0.00000000,
+9.00000000,
+9.00000000
184+4.00000000,
+4.00000000,
+0.00000000,
+4.00000000,
+1.00000000,
+1.00000000
185+0.00000000,
+0.00000000,
+4.00000000,
+0.00000000,
+9.00000000,
+9.00000000
186+9.00000000,
+9.00000000,
+1.00000000,
+9.00000000,
+0.00000000,
+0.00000000
187+9.00000000,
+9.00000000,
+1.00000000,
+9.00000000,
+0.00000000,
+0.00000000
190+0.00000000,
+0.00000000,
+4.00000000,
+0.00000000,
+9.00000000,
+9.00000000
191+4.00000000,
+4.00000000,
+4.00000000,
+0.00000000,
+9.00000000,
+9.00000000
192+0.00000000,
+0.00000000,
+4.00000000,
+4.00000000,
+1.00000000,
+1.00000000
193+9.00000000,
+9.00000000,
+1.00000000,
+9.00000000,
+9.00000000,
+9.00000000
194+9.00000000,
+9.00000000,
+1.00000000,
+9.00000000,
+0.00000000,
+0.00000000
202+7.00000000,
+5.00000000,
+3.00000000,
+8.00000000,
+1.00000000
203+2.00000000,
+1.00000000,
+2.00000000,
+7.00000000,
+6.00000000
206+0.00000000,
+2.23606801,
+4.00000000,
+5.09901953,
+7.21110249
207+2.23606801,
+0.00000000,
+2.23606801,
+6.70820427,
+6.40312433
208+4.00000000,
+2.23606801,
+0.00000000,
+7.07106781,
+4.47213602
209+5.09901953,
+6.70820427,
+7.07106781,
+0.00000000,
+7.07106781
210+7.21110249,
+6.40312433,
+4.47213602,
+7.07106781,
+0.00000000
213+2.23606801,
+2.23606801,
+4.00000000,
+5.09901953,
+7.21110249
214+4.00000000,
+2.23606801,
+2.23606801,
+6.70820427,
+6.40312433
215+5.09901953,
+6.70820427,
+7.07106781,
+7.07106781,
+4.47213602
216+7.21110249,
+6.40312433,
+4.47213602,
+7.07106781,
+7.07106781
219+0.00000000,
+2.23606801,
+4.00000000,
+5.09901953,
+7.21110249
220+2.23606801,
+0.00000000,
+2.23606801,
+6.70820427,
+6.40312433
221+4.00000000,
+2.23606801,
+0.00000000,
+7.07106781,
+4.47213602
222+5.09901953,
+6.70820427,
+7.07106781,
+0.00000000,
+7.07106781
223+7.21110249,
+6.40312433,
+4.47213602,
+7.07106781,
+0.00000000
226+2.23606801,
+2.23606801,
+4.00000000,
+5.09901953,
+7.21110249
227+4.00000000,
+2.23606801,
+2.23606801,
+6.70820427,
+6.40312433
228+5.09901953,
+6.70820427,
+7.07106781,
+7.07106781,
+4.47213602
229+7.21110249,
+6.40312433,
+4.47213602,
+7.07106781,
+7.07106781
232+0.00000000,
+2.23606801,
+4.00000000,
+5.09901953,
+7.21110249
233+2.23606801,
+0.00000000,
+2.23606801,
+6.70820379,
+6.40312433
234+4.00000000,
+2.23606801,
+0.00000000,
+7.07106781,
+4.47213602
235+5.09901953,
+6.70820379,
+7.07106781,
+0.00000000,
+7.07106781
236+7.21110249,
+6.40312433,
+4.47213602,
+7.07106781,
+0.00000000
239+5.00000000,
+5.00000000,
+16.0000000,
+26.0000000,
+52.0000000
240+16.0000000,
+5.00000000,
+5.00000000,
+45.0000000,
+41.0000000
241+26.0000000,
+45.0000000,
+50.0000000,
+50.0000000,
+20.0000000
242+52.0000000,
+41.0000000,
+20.0000000,
+50.0000000,
+50.0000000
245+0.00000000,
+5.00000000,
+16.0000000,
+26.0000000,
+52.0000000
246+5.00000000,
+0.00000000,
+5.00000000,
+45.0000000,
+41.0000000
247+16.0000000,
+5.00000000,
+0.00000000,
+50.0000000,
+20.0000000
248+26.0000000,
+45.0000000,
+50.0000000,
+0.00000000,
+50.0000000
249+52.0000000,
+41.0000000,
+20.0000000,
+50.0000000,
+0.00000000
252+5.00000000,
+5.00000000,
+16.0000000,
+26.0000000,
+52.0000000
253+16.0000000,
+5.00000000,
+5.00000000,
+45.0000000,
+41.0000000
254+26.0000000,
+45.0000000,
+50.0000000,
+50.0000000,
+20.0000000
255+52.0000000,
+41.0000000,
+20.0000000,
+50.0000000,
+50.0000000
- Test:
- test_pm_distanceEuclid
- Todo:
- High Priority: This generic interface must be extended to allow other packing and subsets of the output distance matrix.
Final Remarks ⛓
If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.
-
If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
-
If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.
This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.
- Copyright
- Computational Data Science Lab
- Author:
- Amir Shahmoradi, September 1, 2017, 12:00 AM, Institute for Computational Engineering and Sciences (ICES), The University of Texas Austin
Definition at line 3110 of file pm_distanceEuclid.F90.