ParaMonte Fortran 2.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation. |
Go to the source code of this file.
Data Types | |
interface | pm_optimization::isBracketMax |
Generate and return .true. if and only if a concave quadratic curve can fit the specified input triple [xmin, xlow, xupp] and the function value at the middle point xmin` is larger than both boundary point function values.More... | |
interface | pm_optimization::isBracketMin |
Generate and return .true. if and only if a convex quadratic curve can fit the specified input triple [xmin, xlow, xupp] and the function value at the middle point xmin is smaller than both boundary point function values.More... | |
interface | pm_optimization::setBracketMax |
Refine an initial input interval such that the final returned interval is guaranteed to contain the maximum of the user-specified input function. More... | |
interface | pm_optimization::setBracketMin |
Refine an initial input interval such that the final returned interval is guaranteed to contain the minimum of the user-specified input function. More... | |
interface | pm_optimization::getMinBrent |
Generate and return the minimum value and the corresponding abscissa xmin of the input 1-dimensional function isolated to a fractional precision of about tol using the Brent method.More... | |
interface | pm_optimization::setMinBrent |
Compute and return the minimum value and the corresponding abscissa xmin of the input 1-dimensional function isolated to a fractional precision of about tol using the Brent method.More... | |
interface | pm_optimization::isFailedMinPowell |
Generate and return .true. if and only if the algorithm fails to find the minimum value and the corresponding abscissa xmin(1:ndim) of the input arbitrary (ndim ) dimensional-support function isolated to a fractional precision of about tol using the Powell unconstrained derivative-free minimization method.More... | |
interface | pm_optimization::setMinPowell |
Compute and return the minimum value and the corresponding abscissa xmin(1:ndim) of the input arbitrary (ndim ) dimensional-support function isolated to a fractional precision of about tol using the Powell unconstrained derivative-free minimization method.More... | |
Modules | |
module | pm_optimization |
This module contains procedures, generic interfaces, and types for numerical optimizations of mathematical functions. | |
Variables | |
character(*, SK), parameter | pm_optimization::MODULE_NAME = "@pm_optimization" |