Compute and return the minimum value and the corresponding abscissa xmin(1:ndim)
of the input arbitrary (ndim
) dimensional-support function isolated to a fractional precision of about tol
using the Powell unconstrained derivative-free minimization method.
- Parameters
-
[in] | getFunc | : The scalar function be minimized.
-
On input, it must take a vector of size
ndim of the same type and kind as the input/output argument xmin .
-
On output, it must return a scalar of the same type and kind as the input/output argument
xmin , containing the function value at the specified input vector point.
The following demonstrates the interface of getFunc , function getFunc(x) result(func)
real(RKG), intent(in) :: x(ndim)
real(RKG) :: func
end function
where RKG can refer to any real type kind parameter any supported by the processor (e.g., RK, RK32, RK64, or RK128) supported by the library.
|
[in,out] | xmin | : The input/output vector of size ndim of type real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128).
-
On input, it must contain the initial best guess abscissa at the function minimum.
-
On output, it will contain the inferred abscissa at the function minimum, if the algorithm succeeds.
|
[in,out] | fmin | : The input/output scalar of the same type and kind as the input/output argument xmin .
-
On input, it must contain
getFunc(xmin) .
-
On output, it will contain the function value at the identified minimum abscissa
xmin .
|
[in,out] | dirset | : The input/output matrix of the same type and kind as the input/output argument xmin ,
-
On input, it must contain the initial direction set matrix, each column of which is a unit vector along the corresponding coordinates axis.
-
On output, the initial contents will be destroyed because the matrix is used as a workspace.
|
[in] | tol | : The input positive scalar of the same type and kind as the input/output argument xmin , containing the minimum distance that a new function evaluation point xmin can have from any previously evaluated point.
Values smaller than the suggestion below might lead to algorithm failure due to roundoff error accumulation.
A reasonable choice is tol = sqrt(epsilon(1._RKG)) .
|
[in,out] | niter | : The input/output positive scalar of type integer of default kind IK containing the maximum number of allowed iterations at every step of the algorithm in search of a univariate minimum along a specific direction.
On output,
-
If the algorithm succeeds,
niter will be set to the actual number of iterations taken to find the minimum which is by definition, less than or equal to the input value.
-
If the algorithm fails to converge, it will be a number larger than the input value (by only
1 unit).
A reasonable choice is niter = int(100 * precision(xmin) / 53.) .
|
Possible calling interfaces ⛓
Compute and return the minimum value and the corresponding abscissa xmin(1:ndim) of the input arbitra...
This module contains procedures, generic interfaces, and types for numerical optimizations of mathema...
- Warning
- The condition
fmin == getFunc(xmin)
must hold for the corresponding input arguments.
The condition 0 < niter
must hold for the corresponding input arguments.
The condition 0 < tol
must hold for the corresponding input arguments.
- See also
- getMinBrent
setMinBrent
isFailedMinPowell
setMinPowell
Example usage ⛓
13 integer(IK),
parameter :: ndim
= 4
14 real(RKG) :: xmin(ndim), dirset(ndim, ndim), fmin
15 type(display_type) :: disp
19 call disp%show(
"getSq(x) = (x - [real(RKG) :: 1, 2, 3, 4])**2")
20 call disp%show(
"niter = 100; xmin = getFilled(0., ndim); fmin = getSq(xmin); dirset = getMatInit([ndim, ndim], uppLowDia, 0._RKG, 0._RKG, 1._RKG)")
21 niter
= 100; xmin
= getFilled(
0., ndim); fmin
= getSq(xmin); dirset
= getMatInit([ndim, ndim], uppLowDia,
0._RKG,
0._RKG,
1._RKG)
22 call disp%show(
"call setMinPowell(getSq, xmin, fmin, dirset, epsilon(xmin)**.5, niter)")
23 call setMinPowell(getSq, xmin, fmin, dirset,
epsilon(xmin)
**.
5, niter)
24 call disp%show(
"if (100 < niter) error stop 'minimization failed.'")
25 if (
100 < niter)
error stop 'minimization failed.'
32 function getSq(x)
result(func)
33 real(RKG) ,
intent(in) :: x(ndim)
36 func
= sum((x
- [
real(RKG) :: (idim, idim
= 1, ndim)])
**2)
Generate and return an array of the specified rank and shape of arbitrary intrinsic type and kind wit...
This is a generic method of the derived type display_type with pass attribute.
This is a generic method of the derived type display_type with pass attribute.
Generate and return a matrix of shape (shape(1), shape(2)) with the upper/lower triangle and the diag...
This module contains procedures and generic interfaces for convenient allocation and filling of array...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
integer, parameter RKH
The scalar integer constant of intrinsic default kind, representing the highest-precision real kind t...
This module contains procedures and generic interfaces relevant to generating and initializing matric...
Generate and return an object of type display_type.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example output ⛓
2getSq(x)
= (x
- [
real(RKG) ::
1,
2,
3,
4])
**2
3niter
= 100; xmin
= getFilled(
0., ndim); fmin
= getSq(xmin); dirset
= getMatInit([ndim, ndim], uppLowDia,
0._RKG,
0._RKG,
1._RKG)
4call setMinPowell(getSq, xmin, fmin, dirset,
epsilon(xmin)
**.
5, niter)
5if (
100 < niter)
error stop 'minimization failed.'
7+1.00000000000000000000000000000000000,
+2.00000000000000000000000000000000000,
+3.00000000000000000000000000000000077,
+4.00000000000000000000000000000000000,
+0.593472984109987421717077641847622322E-66
- Test:
- test_pm_optimization
Final Remarks ⛓
If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.
-
If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
-
If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.
This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.
- Copyright
- Computational Data Science Lab
- Author:
- Amir Shahmoradi, Tuesday March 7, 2017, 3:50 AM, Institute for Computational Engineering and Sciences (ICES), The University of Texas Austin
Definition at line 1257 of file pm_optimization.F90.