ParaMonte Fortran 2.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation. |
Go to the source code of this file.
Data Types | |
type | pm_distPois::distPois_type |
This is the derived type for signifying distributions that are of type Poisson as defined in the description of pm_distPois. More... | |
interface | pm_distPois::getPoisLogPMF |
Generate and return the natural logarithm of the Probability Mass Function (PMF) of the Poisson distribution for an input count within the discrete integer support of the distribution \([0, +\infty)\). More... | |
interface | pm_distPois::setPoisLogPMF |
Return the natural logarithm of the Probability Mass Function (PMF) of the Poisson distribution for an input count within the discrete integer support of the distribution \([0, +\infty)\). More... | |
interface | pm_distPois::getPoisCDF |
Generate and return the Cumulative Distribution Function (CDF) of the Poisson distribution for an input count within the discrete integer support of the distribution \([0, +\infty)\). More... | |
interface | pm_distPois::setPoisCDF |
Return the Cumulative Distribution Function (CDF) of the Poisson distribution. More... | |
interface | pm_distPois::getPoisRand |
Generate and return a scalar (or array of arbitrary rank of) random value(s) from the Poisson distribution. More... | |
interface | pm_distPois::setPoisRand |
Return a scalar (or array of arbitrary rank of) random value(s) from the Poisson distribution. More... | |
Modules | |
module | pm_distPois |
This module contains classes and procedures for computing various statistical quantities related to the Poisson distribution. | |
Variables | |
character(*, SK), parameter | pm_distPois::MODULE_NAME = "@pm_distPois" |
real(RKB), parameter | pm_distPois::LAMBDA_LIMIT = 10._RKB |
The constant scalar of type real of kind RKB, representing the value of the parameter of the Poisson distribution above which the rejection method of Hormann, 1993, The transformed rejection method for generating Poisson random variables for generating Poisson-distributed random values is valid.More... | |