ParaMonte Fortran 2.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation.
pm_distPois.F90 File Reference

Go to the source code of this file.

Data Types

type  pm_distPois::distPois_type
 This is the derived type for signifying distributions that are of type Poisson as defined in the description of pm_distPois. More...
 
interface  pm_distPois::getPoisLogPMF
 Generate and return the natural logarithm of the Probability Mass Function (PMF) of the Poisson distribution for an input count within the discrete integer support of the distribution \([0, +\infty)\). More...
 
interface  pm_distPois::setPoisLogPMF
 Return the natural logarithm of the Probability Mass Function (PMF) of the Poisson distribution for an input count within the discrete integer support of the distribution \([0, +\infty)\). More...
 
interface  pm_distPois::getPoisCDF
 Generate and return the Cumulative Distribution Function (CDF) of the Poisson distribution for an input count within the discrete integer support of the distribution \([0, +\infty)\). More...
 
interface  pm_distPois::setPoisCDF
 Return the Cumulative Distribution Function (CDF) of the Poisson distribution. More...
 
interface  pm_distPois::getPoisRand
 Generate and return a scalar (or array of arbitrary rank of) random value(s) from the Poisson distribution.
More...
 
interface  pm_distPois::setPoisRand
 Return a scalar (or array of arbitrary rank of) random value(s) from the Poisson distribution.
More...
 

Modules

module  pm_distPois
 This module contains classes and procedures for computing various statistical quantities related to the Poisson distribution.
 

Variables

character(*, SK), parameter pm_distPois::MODULE_NAME = "@pm_distPois"
 
real(RKB), parameter pm_distPois::LAMBDA_LIMIT = 10._RKB
 The constant scalar of type real of kind RKB, representing the value of the parameter of the Poisson distribution above which the rejection method of Hormann, 1993, The transformed rejection method for generating Poisson random variables for generating Poisson-distributed random values is valid.
More...