ParaMonte Fortran 2.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation.
pm_mathFactorial Module Reference

This module contains procedures and generic interfaces for the Factorial function. More...

Data Types

interface  getFactorial
 Generate and return the factorial of the input positive integer. More...
 
interface  getLogFactorial
 Generate and return the natural logarithm of the factorial of the input positive whole real number. More...
 

Variables

character(*, SK), parameter MODULE_NAME = "@pm_mathFactorial"
 

Detailed Description

This module contains procedures and generic interfaces for the Factorial function.

This module provides a method getFactorial to calculate the factorial of a number. However, note that factorial can easily overflow the integer representations of computers and even real numbers. As such, a better safer method of computing the factorial is to compute its natural logarithm via getLogFactorial.

Benchmarks:


Benchmark :: The runtime performance of getFactorial vs. getLogFactorial

1! Test the performance of `getFactorial()` vs. `getLogFactorial()`.
2program benchmark
3
4 use iso_fortran_env, only: error_unit
5 use pm_kind, only: IK, LK, SK, RKD, IKD
6 use pm_arrayRange, only: getRange
7 use pm_bench, only: bench_type
8
9 implicit none
10
11 integer(IK) :: i
12 integer(IK) :: ipnt
13 integer(IK) :: fileUnit
14 integer(IK) , parameter :: NPNT = 10_IK
15 integer(IK) , parameter :: NBENCH = 2_IK
16 real(RKD) :: Point_RKD(NPNT)
17 real(RKD) :: dummy = 0._RKD
18 real(RKD) :: factorial_RKD = 0._RKD
19 integer(IKD) :: factorial_IKD = 0_IKD
20 integer(IKD) :: point_IKD(NPNT)
21 type(bench_type) :: bench(NBENCH)
22
23 bench(1) = bench_type(name = SK_"getFactorial", exec = getFactorial , overhead = setOverhead)
24 bench(2) = bench_type(name = SK_"getLogFactorial", exec = getLogFactorial , overhead = setOverhead)
25
26 point_IKD = getRange(start = 2_IKD, stop = 20_IKD, step = 2_IKD)
27 Point_RKD = real(point_IKD, RKD)
28
29
30 write(*,"(*(g0,:,' '))")
31 write(*,"(*(g0,:,' vs. '))") (bench(i)%name, i = 1, NBENCH)
32 write(*,"(*(g0,:,' '))")
33
34 open(newunit = fileUnit, file = "main.out", status = "replace")
35
36 write(fileUnit, "(*(g0,:,','))") "Point", (bench(i)%name, i = 1, NBENCH)
37
38 loopOverPoint: do ipnt = 1, NPNT
39
40 write(*,"(*(g0,:,' '))") "Benchmarking with point", point_IKD(ipnt)
41
42 do i = 1, NBENCH
43 bench(i)%timing = bench(i)%getTiming()
44 end do
45
46 write(fileUnit,"(*(g0,:,','))") point_IKD(ipnt), (bench(i)%timing%mean, i = 1, NBENCH)
47
48 end do loopOverPoint
49
50 write(*,"(*(g0,:,' '))") dummy
51 write(*,"(*(g0,:,' '))")
52
53 close(fileUnit)
54
55contains
56
57 !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 ! procedure wrappers.
59 !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60
61 subroutine setOverhead()
62 call finalize()
63 end subroutine
64
65 subroutine finalize()
66 dummy = dummy + factorial_IKD + factorial_RKD
67 end subroutine
68
69 subroutine getFactorial()
70 block
72 factorial_IKD = getFactorial(point_IKD(ipnt))
73 call finalize()
74 end block
75 end subroutine
76
77 subroutine getLogFactorial()
78 block
80 factorial_RKD = log(getLogFactorial(Point_RKD(ipnt)))
81 call finalize()
82 end block
83 end subroutine
84
85end program benchmark
Generate minimally-spaced character, integer, real sequences or sequences at fixed intervals of size ...
Generate and return an object of type timing_type containing the benchmark timing information and sta...
Definition: pm_bench.F90:574
Generate and return the factorial of the input positive integer.
Generate and return the natural logarithm of the factorial of the input positive whole real number.
This module contains procedures and generic interfaces for generating ranges of discrete character,...
This module contains abstract interfaces and types that facilitate benchmarking of different procedur...
Definition: pm_bench.F90:41
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
Definition: pm_kind.F90:268
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
Definition: pm_kind.F90:541
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
Definition: pm_kind.F90:540
integer, parameter RKD
The double precision real kind in Fortran mode. On most platforms, this is an 64-bit real kind.
Definition: pm_kind.F90:568
integer, parameter IKD
The double precision integer kind in Fortran mode. On most platforms, this is a 64-bit integer kind.
Definition: pm_kind.F90:564
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
Definition: pm_kind.F90:539
This module contains procedures and generic interfaces for the Factorial function.
This is the class for creating benchmark and performance-profiling objects.
Definition: pm_bench.F90:386

Example Unix compile command via Intel ifort compiler
1#!/usr/bin/env sh
2rm main.exe
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Example Windows Batch compile command via Intel ifort compiler
1del main.exe
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
4main.exe

Example Unix / MinGW compile command via GNU gfortran compiler
1#!/usr/bin/env sh
2rm main.exe
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Postprocessing of the benchmark output
1#!/usr/bin/env python
2
3import matplotlib.pyplot as plt
4import pandas as pd
5import numpy as np
6
7fontsize = 14
8
9methods = ["getLogFactorial", "getFactorial"]
10labels = [label+"(Whole Number)" for label in methods]
11
12df = pd.read_csv("main.out")
13
14
17
18ax = plt.figure(figsize = 1.25 * np.array([6.4,4.6]), dpi = 200)
19ax = plt.subplot()
20
21for method in methods:
22 plt.plot( df["Point"].values
23 , df[method].values
24 , linewidth = 2
25 , linestyle = "-"
26 , marker = "*"
27 )
28
29plt.xticks(fontsize = fontsize)
30plt.yticks(fontsize = fontsize)
31ax.set_xlabel("Whole Number", fontsize = fontsize)
32ax.set_ylabel("Runtime [ seconds ]", fontsize = fontsize)
33ax.set_title("getLogFactorial() vs. getFactorial()\nLower is better.", fontsize = fontsize)
34ax.set_xscale("log")
35ax.set_yscale("log")
36plt.minorticks_on()
37plt.grid(visible = True, which = "both", axis = "both", color = "0.85", linestyle = "-")
38ax.tick_params(axis = "y", which = "minor")
39ax.tick_params(axis = "x", which = "minor")
40ax.legend ( labels
41 #, loc='center left'
42 #, bbox_to_anchor=(1, 0.5)
43 , fontsize = fontsize
44 )
45
46plt.tight_layout()
47plt.savefig("benchmark.getFactorial_vs_getLogFactorial.runtime.png")
48
49
52
53ax = plt.figure(figsize = 1.25 * np.array([6.4,4.6]), dpi = 200)
54ax = plt.subplot()
55
56plt.plot( df["Point"].values
57 , np.ones(len(df["Point"].values))
58 , linestyle = "-"
59 , marker = "*"
60 #, color = "black"
61 , linewidth = 2
62 )
63plt.plot( df["Point"].values
64 , df["getFactorial"].values / df["getLogFactorial"].values
65 , linestyle = "-"
66 , marker = "*"
67 , linewidth = 2
68 )
69
70plt.xticks(fontsize = fontsize)
71plt.yticks(fontsize = fontsize)
72ax.set_xlabel("Whole Number", fontsize = fontsize)
73ax.set_ylabel("Runtime Ratio", fontsize = fontsize)
74ax.set_title("getFactorial() / getLogFactorial(), Lower means faster.\nLower than 1 means faster than getLogFactorial().", fontsize = fontsize)
75ax.set_xscale("log")
76#ax.set_yscale("log")
77plt.minorticks_on()
78plt.grid(visible = True, which = "both", axis = "both", color = "0.85", linestyle = "-")
79ax.tick_params(axis = "y", which = "minor")
80ax.tick_params(axis = "x", which = "minor")
81ax.legend ( labels
82 #, bbox_to_anchor = (1, 0.5)
83 #, loc = "center left"
84 , fontsize = fontsize
85 )
86
87plt.tight_layout()
88plt.savefig("benchmark.getFactorial_vs_getLogFactorial.runtime.ratio.png")

Visualization of the benchmark output

Benchmark moral
  1. The procedures under the generic interface getFactorial compute the factorial using its default definition while the procedures under the generic interface getLogFactorial use the Fortran intrinsic log_gamma() to compute the log(factorial) which is then converted to factorial in the benchmark code.
    Based on the benchmark results, the safe method of computing the factorial as a real number (thus avoiding the potential numerical overflow) is about 3-5 times slower than the direct definition of the factorial, although the performance gap closes at large input whole numbers.
Test:
test_pm_mathFactorial


Final Remarks


If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.

  1. If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
  2. If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.

This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.

Author:
Amir Shahmoradi, April 23, 2017, 1:36 AM, Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin

Variable Documentation

◆ MODULE_NAME

character(*, SK), parameter pm_mathFactorial::MODULE_NAME = "@pm_mathFactorial"

Definition at line 57 of file pm_mathFactorial.F90.