Generate and return the natural logarithm of the factorial of the input positive whole real number.
The factorial of an integer number \(n\) is defined as,
\begin{equation}
\large
n! = \prod_{i=1}^{n} i = \Gamma(n+1) ~.
\end{equation}
Therefore,
\begin{equation}
\large
\log(n!) = \sum_{i=1}^{n} i = \log\bigg(\Gamma(n+1)\bigg) ~.
\end{equation}
Note that the factorial of a number can readily overflow the maximum integer or even real values representable by computers. This is the primary reason for computing the natural logarithm of the factorial instead of the factorial.
- Parameters
-
[in] | x | : The input scalar or array of arbitrary rank of type real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128) containing the whole number (integer) whose \(\log(x!)\) is to be computed on return. |
- Returns
logFactorial
: The output scalar or array of the same shape as the input x
representing the natural logarithm of the factorial of x
.
Possible calling interfaces ⛓
Generate and return the natural logarithm of the factorial of the input positive whole real number.
This module contains procedures and generic interfaces for the Factorial function.
- Warning
- The input
x
must be a positive whole number.
These conditions are verified only if the library is built with the preprocessor macro CHECK_ENABLED=1
.
-
The
pure
procedure(s) documented herein become impure
when the ParaMonte library is compiled with preprocessor macro CHECK_ENABLED=1
.
By default, these procedures are pure
in release
build and impure
in debug
and testing
builds.
- See also
- getFactorial
Example usage ⛓
10 integer(IK) ,
parameter :: NP
= 1000_IK
11 real(RKH) :: gamIncLow_RKH, x_RKH, shape_RKH
12 real(RKD) :: gamIncLow_RKD, x_RKD, shape_RKD
13 real(RKS) :: gamIncLow_RKS, x_RKS, shape_RKS
16 type(display_type) :: disp
20 call disp%show(
"exp(getLogFactorial(x = 3._RKS))")
25 call disp%show(
"exp(getLogFactorial(x = 4._RKD))")
30 call disp%show(
"exp(getLogFactorial(x = 5._RKH))")
35 call disp%show(
"exp(getLogFactorial(x = real([3., 5., 7., 10.],RKS)))")
46 real(RKS),
allocatable :: WholeNumber(:)
47 integer :: fileUnit, i
49 WholeNumber
= getRange(start
= 0_IK,
stop = 30_IK, step
= 5_IK)
50 open(newunit
= fileUnit, file
= "getLogFactorial.RK.txt")
51 write(fileUnit,
"(2(g0,:,' '))") (WholeNumber(i),
exp(
getLogFactorial(WholeNumber(i))), i
= 1,
size(WholeNumber))
Generate minimally-spaced character, integer, real sequences or sequences at fixed intervals of size ...
This is a generic method of the derived type display_type with pass attribute.
This is a generic method of the derived type display_type with pass attribute.
This module contains procedures and generic interfaces for generating ranges of discrete character,...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter RKD
The double precision real kind in Fortran mode. On most platforms, this is an 64-bit real kind.
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
integer, parameter RKH
The scalar integer constant of intrinsic default kind, representing the highest-precision real kind t...
integer, parameter RKS
The single-precision real kind in Fortran mode. On most platforms, this is an 32-bit real kind.
Generate and return an object of type display_type.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example output ⛓
11+119.999999999999999999999999999999963
15+6.00000000,
+120.000008,
+5040.00195,
+3628801.75
Postprocessing of the example output ⛓
3import matplotlib.pyplot
as plt
15linestyle = {
"CK" :
"-"
19xlab = {
"CK" :
r"Whole Complex Number: N"
20 ,
"IK" :
r"Whole Integer Number: N"
21 ,
"RK" :
r"Whole Real Number: N"
24for kind
in [
"IK",
"CK",
"RK"]:
26 pattern =
"*." + kind +
".txt"
27 fileList = glob.glob(pattern)
28 if len(fileList) == 1:
30 df = pd.read_csv(fileList[0], delimiter =
" ")
32 fig = plt.figure(figsize = 1.25 * np.array([6.4, 4.8]), dpi = 200)
36 plt.plot( df.values[:, 0]
38 , marker = marker[kind]
39 , linestyle = linestyle[kind]
42 plt.plot( df.values[:, 1]
44 , marker = marker[kind]
45 , linestyle = linestyle[kind]
49 plt.plot( df.values[:, 0]
51 , marker = marker[kind]
52 , linestyle = linestyle[kind]
56 plt.xticks(fontsize = fontsize - 2)
57 plt.yticks(fontsize = fontsize - 2)
58 ax.set_xlabel(xlab[kind], fontsize = fontsize)
59 ax.set_ylabel(
r"Factorial: $N!$", fontsize = fontsize)
62 plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
63 ax.tick_params(axis =
"y", which =
"minor")
64 ax.tick_params(axis =
"x", which =
"minor")
66 plt.savefig(fileList[0].replace(
".txt",
".png"))
68 elif len(fileList) > 1:
70 sys.exit(
"Ambiguous file list exists.")
Visualization of the example output ⛓
- Test:
- test_pm_mathFactorial
Final Remarks ⛓
If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.
-
If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
-
If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.
This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.
- Copyright
- Computational Data Science Lab
- Author:
- Amir Shahmoradi, April 23, 2017, 1:36 AM, Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin
Definition at line 244 of file pm_mathFactorial.F90.