ParaMonte Fortran 2.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation.
pm_distPareto Module Reference

This module contains classes and procedures for computing various statistical quantities related to the (Truncated) Pareto distribution. More...

Data Types

type  distPareto_type
 This is the derived type for signifying distributions that are of type Pareto as defined in the description of pm_distPareto. More...
 
interface  getParetoLogCDF
 Generate and return the natural logarithm of the Cumulative Distribution Function (CDF) of the (Truncated) Pareto distribution for an input log(x) within the support of the distribution \(x \in [0 < x_\mathrm{min}, x_\mathrm{max} < +\infty]\). More...
 
interface  getParetoLogCDFNF
 Generate and return the natural logarithm of the normalization factor of the CDF of the (Truncated) Pareto distribution for an input parameter set \((\alpha, x_\mathrm{min}, x_\mathrm{max})\). More...
 
interface  getParetoLogPDF
 Generate and return the natural logarithm of the Probability Density Function (PDF) of the (Truncated) Pareto distribution for an input log(x) within the support of the distribution \(x \in [0 < x_\mathrm{min}, x_\mathrm{max} < +\infty]\). More...
 
interface  getParetoLogPDFNF
 Generate and return the natural logarithm of the normalization factor of the PDF of the (Truncated) Pareto distribution for an input parameter set \((\alpha, x_\mathrm{min}, x_\mathrm{max})\). More...
 
interface  getParetoLogQuan
 Generate and return a scalar (or array of arbitrary rank) of the natural logarithm(s) of quantile corresponding to the specified CDF of (Truncated) Pareto distribution with parameters \((\alpha, x_\mathrm{min}, x_\mathrm{max})\).
More...
 
interface  getParetoLogRand
 Generate and return a scalar (or array of arbitrary rank) of the natural logarithm(s) of random value(s) from the (Truncated) Pareto distribution with parameters \((\alpha, x_\mathrm{min}, x_\mathrm{max})\).
More...
 
interface  setParetoLogCDF
 Return the natural logarithm of the Cumulative Distribution Function (CDF) of the (Truncated) Pareto distribution for an input log(x) within the support of the distribution \(x \in [0 < x_\mathrm{min}, x_\mathrm{max} < +\infty]\). More...
 
interface  setParetoLogPDF
 Return the natural logarithm of the Probability Density Function (PDF) of the (Truncated) Pareto distribution for an input log(x) within the support of the distribution \(x \in [0 < x_\mathrm{min}, x_\mathrm{max} < +\infty]\). More...
 
interface  setParetoLogQuan
 Return a scalar (or array of arbitrary rank) of the natural logarithm(s) of quantile corresponding to the specified CDF of (Truncated) Pareto distribution with parameters \((\alpha, x_\mathrm{min}, x_\mathrm{max})\).
More...
 
interface  setParetoLogRand
 Return a scalar (or array of arbitrary rank) of the natural logarithm(s) of random value(s) from the (Truncated) Pareto distribution with parameters \((\alpha, x_\mathrm{min}, x_\mathrm{max})\). More...
 

Variables

character(*, SK), parameter MODULE_NAME = "@pm_distPareto"
 

Detailed Description

This module contains classes and procedures for computing various statistical quantities related to the (Truncated) Pareto distribution.

Specifically, this module contains routines for computing the following quantities of the (Truncated) Pareto distribution:

  1. the Probability Density Function (PDF)
  2. the Cumulative Distribution Function (CDF)
  3. the Random Number Generation from the distribution (RNG)
  4. the Inverse Cumulative Distribution Function (ICDF) or the Quantile Function

The PDF of the (Truncated) Pareto distribution over a strictly-positive support \(x \in [x_\mathrm{min}, x_\mathrm{max}]\) is defined with the three (shape, scale, scale) parameters \((\alpha, x_\mathrm{min}, x_\mathrm{max})\) as,

\begin{equation} \large \pi(x | \alpha, x_\mathrm{min}, x_\mathrm{max}) = \eta(\alpha, x_\mathrm{min}, x_\mathrm{max}) ~ x^{\alpha - 1} ~, \end{equation}

where \(\mathbf{-\infty < \alpha < 0}\) and \(\mathbf{0 < x_\mathrm{min} \leq x \leq x_\mathrm{max} < +\infty}\) hold, and \(\eta(\alpha, x_\mathrm{min}, x_\mathrm{max})\) is the normalization factor of the PDF,

\begin{equation} \large \eta(\alpha, x_\mathrm{min}, x_\mathrm{max}) = \frac{\alpha}{x_\mathrm{max}^\alpha - x_\mathrm{min}^\alpha} ~, \end{equation}

When \(x_\mathrm{max} \rightarrow +\infty\), the Truncated Pareto distribution simplifies to the Pareto Distribution with PDF,

\begin{equation} \large \lim_{x_\mathrm{max} \rightarrow +\infty} \pi(x | \alpha, x_\mathrm{min}, x_\mathrm{max}) = \frac{-\alpha}{x_\mathrm{min}^\alpha} x^{\alpha - 1} ~, \end{equation}

The equation for \(\eta(\cdot)\) for the Pareto distribution simplifies to,

\begin{equation} \large \lim_{x_\mathrm{max} \rightarrow +\infty} \eta(\alpha, x_\mathrm{min}, x_\mathrm{max}) = -\alpha x_\mathrm{min}^{-\alpha} ~,~ 0 < \alpha < +\infty. \end{equation}

The corresponding CDF of the (Truncated) Pareto distribution is given by,

\begin{equation} \large \mathrm{CDF}(x | \alpha, x_\mathrm{min}, x_\mathrm{max}) = \zeta(\alpha, x_\mathrm{min}, x_\mathrm{max}) \bigg[1 - \bigg(\frac{x}{x_\mathrm{min}}\bigg)^\alpha\bigg] ~, \end{equation}

where \(\mathbf{0 < \alpha < +\infty}\) and \(\mathbf{0 < x_\mathrm{min} \leq x \leq x_\mathrm{max} < +\infty}\) hold, and \(\zeta(\alpha, x_\mathrm{min}, x_\mathrm{max})\) is the normalization factor of the CDF,

\begin{eqnarray} \large \zeta(\alpha, x_\mathrm{min}, x_\mathrm{max}) &=& \frac{x_\mathrm{min}^\alpha}{x_\mathrm{min}^\alpha - x_\mathrm{max}^\alpha} ~, \\ &=& -\frac{x_\mathrm{min}^\alpha}{\alpha} \eta(\alpha, x_\mathrm{min}, x_\mathrm{max}) ~, \end{eqnarray}

where \(\eta(\cdot)\) is the normalization factor of the PDF.

When \(x_\mathrm{max} \rightarrow +\infty\), the Truncated Pareto distribution simplifies to the Pareto Distribution with CDF,

\begin{equation} \large \lim_{x_\mathrm{max} \rightarrow +\infty} \mathrm{CDF}(x | \alpha, x_\mathrm{min}, x_\mathrm{max}) = \bigg[1 - \bigg(\frac{x}{x_\mathrm{min}}\bigg)^\alpha\bigg] ~, \end{equation}

with,

\begin{equation} \large \lim_{x_\mathrm{max} \rightarrow +\infty} \zeta(\alpha, x_\mathrm{min}, x_\mathrm{max}) = +1 ~. \end{equation}

The corresponding Inverse CDF of the (Truncated) Pareto distribution is given by,

\begin{equation} \large Q(\mathrm{CDF}(x); \alpha, x_\mathrm{min}, x_\mathrm{max}) \equiv x = x_\mathrm{min} \bigg(1 - \frac{\mathrm{CDF}(x)}{\zeta(\alpha, x_\mathrm{min}, x_\mathrm{max})}\bigg)^{\frac{1}{\alpha}} ~, \end{equation}

where \(\mathbf{-\infty < \alpha < 0}\) and \(\mathbf{0 < x_\mathrm{min} \leq Q(\mathrm{CDF}(x); \alpha, x_\mathrm{min}, x_\mathrm{max}) \leq x_\mathrm{max} < +\infty}\) hold, and \(\zeta(\alpha, x_\mathrm{min}, x_\mathrm{max})\) is the normalization factor of the CDF,

\begin{equation} \large \zeta(\alpha, x_\mathrm{min}, x_\mathrm{max}) = \frac{x_\mathrm{min}^\alpha}{x_\mathrm{min}^\alpha - x_\mathrm{max}^\alpha} ~. \end{equation}

When \(x_\mathrm{max} \rightarrow +\infty\), the Truncated Pareto distribution simplifies to the Pareto Distribution, with,

\begin{equation} \large Q(\mathrm{CDF}(x); \alpha, x_\mathrm{min}, x_\mathrm{max}) \equiv x = x_\mathrm{min} \big(1 - \mathrm{CDF}(x)\big)^{\frac{1}{\alpha}} ~, \end{equation}

Random Number Generation

Assuming that \(U \in [0, 1)\) is a uniformly-distributed random variate, the transformed random variable,

\begin{equation} \large x = x_\mathrm{min} \bigg(1 - \frac{U}{\zeta(\alpha, x_\mathrm{min}, x_\mathrm{max})}\bigg)^{\frac{1}{\alpha}} ~, \end{equation}

follows a Truncated Pareto distribution with parameters \((\alpha, x_\mathrm{min}, x_\mathrm{max}\)) where \(\mathbf{-\infty < \alpha < 0}\) and \(\mathbf{0 < x_\mathrm{min} \leq x \leq x_\mathrm{max} < +\infty}\) hold, and \(\zeta(\alpha, x_\mathrm{min}, x_\mathrm{max})\) is the normalization factor of the CDF,

\begin{equation} \large \zeta(\alpha, x_\mathrm{min}, x_\mathrm{max}) = \frac{x_\mathrm{min}^\alpha}{x_\mathrm{min}^\alpha - x_\mathrm{max}^\alpha} ~, \end{equation}

When \(x_\mathrm{max} \rightarrow +\infty\), the Truncated Pareto distribution simplifies to the Pareto Distribution, with,

\begin{equation} \large x = x_\mathrm{min} \big(1 - U\big)^{\frac{1}{\alpha}} ~, \end{equation}

Remarks
See pm_distPower for the case of \(0 < \alpha < +\infty\).
See pm_distPoweto for the case of \(\alpha = 0\).
See also
pm_distPower
pm_distPareto
pm_distPoweto
Test:
test_pm_distPareto


Final Remarks


If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.

  1. If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
  2. If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.

This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.

Author:
Amir Shahmoradi, Oct 16, 2009, 11:14 AM, Michigan

Variable Documentation

◆ MODULE_NAME

character(*, SK), parameter pm_distPareto::MODULE_NAME = "@pm_distPareto"

Definition at line 147 of file pm_distPareto.F90.