Return the roots of a polynomial of arbitrary degree specified by its coefficients coef
.
More...
Return the roots of a polynomial of arbitrary degree specified by its coefficients coef
.
See the documentation of pm_polynomial for details of the root-finding method.
- Parameters
-
[in,out] | root | : The output contiguous vector of type complex of the same kind as the input argument coef and the same size as the degree of the polynomial (i.e., size(coef) - 1 ), containing the roots of the polynomial determined from the polynomial coefficients coef .
If the specified input method argument is of type sgl_type, the argument root has intent(inout) and the input values will be used to initialize the root searching only if the condition method%reckoned == .true. holds.
|
[out] | count | : The output scalar of type integer of default kind IK, containing the total number of roots computed and stored in the output vector slice root(1 : count) .
A value of count = size(root) implies a successful computation of all polynomial roots.
A value of count = 0 implies a total failure of the algorithm in finding any roots.
The condition count < size(root) occurs if either,
-
the algorithm fails to converge, or
-
the algorithm fails to identify all roots of the polynomial, or
-
the condition
coef(size(coef)) == 0. occurs (i.e., when the coefficient of the highest power of the polynomial is zero), or
-
the condition
size(coef) < 2 occurs (i.e., when the input polynomial is a constant).
|
[in] | coef | : The input contiguous vector of,
-
type
complex of kind any supported by the processor (e.g., CK, CK32, CK64, or CK128), or
-
type
real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128),
containing the coefficients of the polynomial in the order of increasing power.
By definition, the degree of the polynomial is size(coef) - 1 .
|
[in] | method | : The input scalar constant that can be any of the following:
-
the scalar constant eigen or a constant object of type eigen_type implying the use of the Eigenvalue root-finding method.
-
the scalar constant jenkins or a constant object of type jenkins_type implying the use of the Jenkins-Traub root-finding method.
-
the scalar constant laguerre or a constant object of type laguerre_type implying the use of the Laguerre root-finding method.
-
the scalar constant sgl or a constant object of type sgl_type implying the use of the Skowron-Gould root-finding method.
This method is yet to be fully implemented.
Which polynomial root-finding method should I use?
-
If you have a polynomial of highly varying coefficients, then the Eigenvalue method as specified by eigen_type is likely more reliable.
-
The Jenkins-Traub is also considered a relatively reliable fast Sure-Fire technique for finding the roots of polynomials.
|
Possible calling interfaces ⛓
call setPolyRoot(root(
1 : degree), count, coef(
0 : degree), method) ! `degree` is the degree of the polynomial.
Return the roots of a polynomial of arbitrary degree specified by its coefficients coef.
This module contains procedures and generic interfaces for performing various mathematical operations...
This is a concrete derived type whose instances are exclusively used to signify the use of the Eigenv...
This is a concrete derived type whose instances are exclusively used to signify the use of Jenkins-Tr...
This is a concrete derived type whose instances are exclusively used to signify the use of Laguerre m...
This is a concrete derived type whose instances are exclusively used to signify the use of Skowron-Go...
- Warning
- The condition
1 < size(coef)
must hold for the corresponding input arguments.
The condition coef(size(coef)) /= 0.
must hold for the corresponding input arguments (i.e., the coefficient of the highest-degree term must be non-zero).
The condition all(shape(workspace) == size(coef) - 1)
must hold for the corresponding input arguments.
The condition size(root) == size(coef) - 1
must hold for the corresponding input arguments.
These conditions are verified only if the library is built with the preprocessor macro CHECK_ENABLED=1
.
-
It is crucial to keep in mind that computers use a fixed number of binary digits to represent floating-point numbers.
As such polynomials of high degree can be problematic for root-finding algorithms.
- See also
- getRoot
setRoot
getPolyRoot
setPolyRoot
Example usage ⛓
16 type(display_type) :: disp
26#define GET_ROOT(CREP, TYPE, RKG, METHOD) \
29TYPE(RKG),
allocatable :: coef(:); \
30complex(RKG),
allocatable :: root(:); \
31type(METHOD) :: method; \
35call disp%show( coef ,
format = "(sp,"//getStr(CREP)
//"(g0,:,', '))"); \
36call disp%show(
"call setResized(root, size(coef, 1, IK) - 1_IK)"); \
38call disp%show(
"[same_type_as(method, sgl), same_type_as(method, eigen), same_type_as(method, jenkins), same_type_as(method, laguerre)]"); \
40call disp%show(
"call setPolyRoot(root, count, coef, eigen)"); \
45call disp%show( root(
1:count) ,
format = "(sp,2(g0,:,', '))"); \
46call disp%show(
"getPolyVal(coef, root(1:count))"); \
52 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
53 call disp%show(
"! Compute the roots of polynomials with real coefficients.")
54 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
58 [
8,
-8,
16,
-16,
8,
-8]
73 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
74 call disp%show(
"! Compute the roots of polynomials with real coefficients.")
75 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
79 [
3628800,
-10628640,
12753576,
-8409500,
3416930,
-902055,
157773,
-18150,
1320,
-55,
1]
94 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
95 call disp%show(
"! Compute the roots of polynomials with complex coefficients with zeros 1,2,...,10.")
96 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
100 [
3628800,
-10628640,
12753576,
-8409500,
3416930,
-902055,
157773,
-18150,
1320,
-55,
1]
101 GET_ROOT(
2,
complex, RKS, sgl_type)
102 GET_ROOT(
2,
complex, RKD, sgl_type)
103 GET_ROOT(
2,
complex, RKH, sgl_type)
104 GET_ROOT(
2,
complex, RKS, eigen_type)
105 GET_ROOT(
2,
complex, RKD, eigen_type)
106 GET_ROOT(
2,
complex, RKH, eigen_type)
107 GET_ROOT(
2,
complex, RKS, jenkins_type)
108 GET_ROOT(
2,
complex, RKD, jenkins_type)
109 GET_ROOT(
2,
complex, RKH, jenkins_type)
110 GET_ROOT(
2,
complex, RKS, laguerre_type)
111 GET_ROOT(
2,
complex, RKD, laguerre_type)
112 GET_ROOT(
2,
complex, RKH, laguerre_type)
115 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
116 call disp%show(
"! Compute the roots of polynomials with complex coefficients with zeros on imaginary axis.")
117 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
121 [(
0._RKH,
1._RKH), (
-10001.0001_RKH,
0._RKH), (
0._RKH,
-10001.0001_RKH), (
1._RKH,
0._RKH)]
122 GET_ROOT(
2,
complex, RKD, sgl_type)
123 GET_ROOT(
2,
complex, RKH, sgl_type)
124 GET_ROOT(
2,
complex, RKD, eigen_type)
125 GET_ROOT(
2,
complex, RKH, eigen_type)
126 GET_ROOT(
2,
complex, RKD, jenkins_type)
127 GET_ROOT(
2,
complex, RKH, jenkins_type)
128 GET_ROOT(
2,
complex, RKD, laguerre_type)
129 GET_ROOT(
2,
complex, RKH, laguerre_type)
132 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
133 call disp%show(
"! Compute the roots of polynomials with complex coefficients with zeros at 1+i,1/2*(1+i)....1/(2**-9)*(1+i).")
134 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
138[ (
0._RKH,
9.094947017729282e-13_RKH) \
139, (
-4.652065399568528e-10_RKH,
-4.652065399568528e-10_RKH) \
140, (
1.584803612786345e-7_RKH,
0._RKH) \
141, (
-1.154642632172909e-5_RKH,
1.154642632172909e-5_RKH) \
142, (
0._RKH,
-7.820779428584501e-4_RKH) \
143, (
1.271507365163416e-2_RKH,
1.271507365163416e-2_RKH) \
144, (
-.
2002119533717632e0_RKH,
0._RKH) \
145, (.
7567065954208374e0_RKH,
-7.567065954208374e-1_RKH) \
146, (
0._RKH,
2.658859252929688e0_RKH) \
147, (
-1.998046875_RKH,
-1.998046875_RKH) \
150GET_ROOT(
2,
complex, RKD, sgl_type)
151GET_ROOT(
2,
complex, RKH, sgl_type)
152GET_ROOT(
2,
complex, RKD, eigen_type)
153GET_ROOT(
2,
complex, RKH, eigen_type)
154GET_ROOT(
2,
complex, RKD, jenkins_type)
155GET_ROOT(
2,
complex, RKH, jenkins_type)
156GET_ROOT(
2,
complex, RKD, laguerre_type)
157GET_ROOT(
2,
complex, RKH, laguerre_type)
160 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
161 call disp%show(
"! Compute the roots of polynomials with complex coefficients with multiple zeros.")
162 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
166[ (
288._RKH,
0._RKH) \
167, (
-1344._RKH,
504._RKH) \
168, (
2204._RKH,
-2352._RKH) \
169, (
-920._RKH,
4334._RKH) \
170, (
-1587._RKH,
-3836._RKH) \
171, (
2374._RKH,
1394._RKH) \
172, (
-1293._RKH,
200._RKH) \
173, (
284._RKH,
-334._RKH) \
174, (
3._RKH,
100._RKH) \
175, (
-10._RKH,
-10._RKH) \
178GET_ROOT(
2,
complex, RKS, sgl_type)
179GET_ROOT(
2,
complex, RKD, sgl_type)
180GET_ROOT(
2,
complex, RKH, sgl_type)
181GET_ROOT(
2,
complex, RKS, eigen_type)
182GET_ROOT(
2,
complex, RKD, eigen_type)
183GET_ROOT(
2,
complex, RKH, eigen_type)
184GET_ROOT(
2,
complex, RKS, jenkins_type)
185GET_ROOT(
2,
complex, RKD, jenkins_type)
186GET_ROOT(
2,
complex, RKH, jenkins_type)
187GET_ROOT(
2,
complex, RKS, laguerre_type)
188GET_ROOT(
2,
complex, RKD, laguerre_type)
189GET_ROOT(
2,
complex, RKH, laguerre_type)
192 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
193 call disp%show(
"! Compute the roots of polynomials with complex coefficients with 12 zeros evenly distribute on a circle of radius 1. centered at 0+2i.")
194 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
198[ (
4095._RKH,
0._RKH) \
199, (
0._RKH,
24576._RKH) \
200, (
-67584._RKH,
0._RKH) \
201, (
0._RKH,
-112640._RKH) \
202, (
126720._RKH,
0._RKH) \
203, (
0._RKH,
101376._RKH) \
204, (
-59136._RKH,
0._RKH) \
205, (
0._RKH,
-25344._RKH) \
206, (
7920._RKH,
0._RKH) \
207, (
0._RKH,
1760._RKH) \
208, (
-264._RKH,
0._RKH) \
209, (
0._RKH,
-24._RKH) \
212GET_ROOT(
2,
complex, RKS, sgl_type)
213GET_ROOT(
2,
complex, RKD, sgl_type)
214GET_ROOT(
2,
complex, RKH, sgl_type)
215GET_ROOT(
2,
complex, RKS, eigen_type)
216GET_ROOT(
2,
complex, RKD, eigen_type)
217GET_ROOT(
2,
complex, RKH, eigen_type)
218GET_ROOT(
2,
complex, RKS, jenkins_type)
219GET_ROOT(
2,
complex, RKD, jenkins_type)
220GET_ROOT(
2,
complex, RKH, jenkins_type)
221GET_ROOT(
2,
complex, RKS, laguerre_type)
222GET_ROOT(
2,
complex, RKD, laguerre_type)
223GET_ROOT(
2,
complex, RKH, laguerre_type)
Allocate or resize (shrink or expand) an input allocatable scalar string or array of rank 1....
This is a generic method of the derived type display_type with pass attribute.
This is a generic method of the derived type display_type with pass attribute.
Generate and return the value of the polynomial of arbitrary degree whose coefficients are specified ...
Generate and return the conversion of the input value to an output Fortran string,...
This module contains procedures and generic interfaces for resizing allocatable arrays of various typ...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter RKD
The double precision real kind in Fortran mode. On most platforms, this is an 64-bit real kind.
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
integer, parameter RKH
The scalar integer constant of intrinsic default kind, representing the highest-precision real kind t...
integer, parameter RKS
The single-precision real kind in Fortran mode. On most platforms, this is an 32-bit real kind.
type(eigen_type), parameter eigen
This is a scalar parameter object of type eigen_type that is exclusively used to signify the use of E...
type(jenkins_type), parameter jenkins
This is a scalar parameter object of type jenkins_type that is exclusively used to signify the use of...
type(laguerre_type), parameter laguerre
This is a scalar parameter object of type laguerre_type that is exclusively used to signify the use o...
type(sgl_type), parameter sgl
This is a scalar parameter object of type sgl_type that is exclusively used to signify the use of Sko...
This module contains the generic procedures for converting values of different types and kinds to For...
Generate and return an object of type display_type.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example output ⛓
15[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
21+0.999999642,
+0.00000000,
22-0.429153442E-4,
+1.00021696,
23-0.429153442E-4,
-1.00021696,
24+0.427067280E-4,
+0.999782741,
25+0.427067280E-4,
-0.999782741
27+0.114440918E-4,
+0.00000000,
28+0.238418579E-5,
-0.804837327E-6,
29+0.238418579E-5,
+0.804837327E-6,
30+0.190734863E-5,
-0.566709787E-6,
31+0.190734863E-5,
+0.566709787E-6
42[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
48+0.99999999999999922,
+0.0000000000000000,
49+0.95202123961968255E-9,
+1.0000000121923602,
50+0.95202123961968255E-9,
-1.0000000121923602,
51-0.95202196126464855E-9,
+0.99999998780764010,
52-0.95202196126464855E-9,
-0.99999998780764010
54+0.23980817331903381E-13,
+0.0000000000000000,
55+0.26645352591003757E-14,
-0.55147887586065774E-14,
56+0.26645352591003757E-14,
+0.55147887586065774E-14,
57+0.35527136788005009E-14,
-0.50706995570283210E-14,
58+0.35527136788005009E-14,
+0.50706995570283210E-14
62+8.00000000000000000000000000000000000,
63-8.00000000000000000000000000000000000,
64+16.0000000000000000000000000000000000,
65-16.0000000000000000000000000000000000,
66+8.00000000000000000000000000000000000,
67-8.00000000000000000000000000000000000
69[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
75+1.00000000000000000000000000000000019,
+0.00000000000000000000000000000000000,
76-0.108472542273474050653982053325797972E-16,
+1.00000000000000000335355606599927526,
77-0.108472542273474050653982053325797972E-16,
-1.00000000000000000335355606599927526,
78+0.108472542273474053061394483809842788E-16,
+0.999999999999999996646443934000722236,
79+0.108472542273474053061394483809842788E-16,
-0.999999999999999996646443934000722236
81-0.770371977754894341222391177033970927E-32,
+0.00000000000000000000000000000000000,
82-0.308148791101957736488956470813588371E-32,
+0.635981983657862231619686642857405375E-32,
83-0.308148791101957736488956470813588371E-32,
-0.635981983657862231619686642857405375E-32,
84-0.308148791101957736488956470813588371E-32,
+0.597463384770117558391908329517715426E-32,
85-0.308148791101957736488956470813588371E-32,
-0.597463384770117558391908329517715426E-32
96[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
102+0.999999642,
+0.00000000,
103-0.429153442E-4,
+1.00021696,
104-0.429153442E-4,
-1.00021696,
105+0.427067280E-4,
+0.999782741,
106+0.427067280E-4,
-0.999782741
108+0.114440918E-4,
+0.00000000,
109+0.238418579E-5,
-0.804837327E-6,
110+0.238418579E-5,
+0.804837327E-6,
111+0.190734863E-5,
-0.566709787E-6,
112+0.190734863E-5,
+0.566709787E-6
123[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
129+0.99999999999999922,
+0.0000000000000000,
130+0.95202123961968255E-9,
+1.0000000121923602,
131+0.95202123961968255E-9,
-1.0000000121923602,
132-0.95202196126464855E-9,
+0.99999998780764010,
133-0.95202196126464855E-9,
-0.99999998780764010
135+0.23980817331903381E-13,
+0.0000000000000000,
136+0.26645352591003757E-14,
-0.55147887586065774E-14,
137+0.26645352591003757E-14,
+0.55147887586065774E-14,
138+0.35527136788005009E-14,
-0.50706995570283210E-14,
139+0.35527136788005009E-14,
+0.50706995570283210E-14
143+8.00000000000000000000000000000000000,
144-8.00000000000000000000000000000000000,
145+16.0000000000000000000000000000000000,
146-16.0000000000000000000000000000000000,
147+8.00000000000000000000000000000000000,
148-8.00000000000000000000000000000000000
150[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
156+1.00000000000000000000000000000000019,
+0.00000000000000000000000000000000000,
157-0.108472542273474050653982053325797972E-16,
+1.00000000000000000335355606599927526,
158-0.108472542273474050653982053325797972E-16,
-1.00000000000000000335355606599927526,
159+0.108472542273474053061394483809842788E-16,
+0.999999999999999996646443934000722236,
160+0.108472542273474053061394483809842788E-16,
-0.999999999999999996646443934000722236
162-0.770371977754894341222391177033970927E-32,
+0.00000000000000000000000000000000000,
163-0.308148791101957736488956470813588371E-32,
+0.635981983657862231619686642857405375E-32,
164-0.308148791101957736488956470813588371E-32,
-0.635981983657862231619686642857405375E-32,
165-0.308148791101957736488956470813588371E-32,
+0.597463384770117558391908329517715426E-32,
166-0.308148791101957736488956470813588371E-32,
-0.597463384770117558391908329517715426E-32
177[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
183+0.999999642,
+0.00000000,
184-0.429153442E-4,
+1.00021696,
185-0.429153442E-4,
-1.00021696,
186+0.427067280E-4,
+0.999782741,
187+0.427067280E-4,
-0.999782741
189+0.114440918E-4,
+0.00000000,
190+0.238418579E-5,
-0.804837327E-6,
191+0.238418579E-5,
+0.804837327E-6,
192+0.190734863E-5,
-0.566709787E-6,
193+0.190734863E-5,
+0.566709787E-6
204[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
210+0.99999999999999922,
+0.0000000000000000,
211+0.95202123961968255E-9,
+1.0000000121923602,
212+0.95202123961968255E-9,
-1.0000000121923602,
213-0.95202196126464855E-9,
+0.99999998780764010,
214-0.95202196126464855E-9,
-0.99999998780764010
216+0.23980817331903381E-13,
+0.0000000000000000,
217+0.26645352591003757E-14,
-0.55147887586065774E-14,
218+0.26645352591003757E-14,
+0.55147887586065774E-14,
219+0.35527136788005009E-14,
-0.50706995570283210E-14,
220+0.35527136788005009E-14,
+0.50706995570283210E-14
224+8.00000000000000000000000000000000000,
225-8.00000000000000000000000000000000000,
226+16.0000000000000000000000000000000000,
227-16.0000000000000000000000000000000000,
228+8.00000000000000000000000000000000000,
229-8.00000000000000000000000000000000000
231[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
237+1.00000000000000000000000000000000019,
+0.00000000000000000000000000000000000,
238-0.108472542273474050653982053325797972E-16,
+1.00000000000000000335355606599927526,
239-0.108472542273474050653982053325797972E-16,
-1.00000000000000000335355606599927526,
240+0.108472542273474053061394483809842788E-16,
+0.999999999999999996646443934000722236,
241+0.108472542273474053061394483809842788E-16,
-0.999999999999999996646443934000722236
243-0.770371977754894341222391177033970927E-32,
+0.00000000000000000000000000000000000,
244-0.308148791101957736488956470813588371E-32,
+0.635981983657862231619686642857405375E-32,
245-0.308148791101957736488956470813588371E-32,
-0.635981983657862231619686642857405375E-32,
246-0.308148791101957736488956470813588371E-32,
+0.597463384770117558391908329517715426E-32,
247-0.308148791101957736488956470813588371E-32,
-0.597463384770117558391908329517715426E-32
258[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
264+0.999999642,
+0.00000000,
265-0.429153442E-4,
+1.00021696,
266-0.429153442E-4,
-1.00021696,
267+0.427067280E-4,
+0.999782741,
268+0.427067280E-4,
-0.999782741
270+0.114440918E-4,
+0.00000000,
271+0.238418579E-5,
-0.804837327E-6,
272+0.238418579E-5,
+0.804837327E-6,
273+0.190734863E-5,
-0.566709787E-6,
274+0.190734863E-5,
+0.566709787E-6
285[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
291+0.99999999999999922,
+0.0000000000000000,
292+0.95202123961968255E-9,
+1.0000000121923602,
293+0.95202123961968255E-9,
-1.0000000121923602,
294-0.95202196126464855E-9,
+0.99999998780764010,
295-0.95202196126464855E-9,
-0.99999998780764010
297+0.23980817331903381E-13,
+0.0000000000000000,
298+0.26645352591003757E-14,
-0.55147887586065774E-14,
299+0.26645352591003757E-14,
+0.55147887586065774E-14,
300+0.35527136788005009E-14,
-0.50706995570283210E-14,
301+0.35527136788005009E-14,
+0.50706995570283210E-14
305+8.00000000000000000000000000000000000,
306-8.00000000000000000000000000000000000,
307+16.0000000000000000000000000000000000,
308-16.0000000000000000000000000000000000,
309+8.00000000000000000000000000000000000,
310-8.00000000000000000000000000000000000
312[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
318+1.00000000000000000000000000000000019,
+0.00000000000000000000000000000000000,
319-0.108472542273474050653982053325797972E-16,
+1.00000000000000000335355606599927526,
320-0.108472542273474050653982053325797972E-16,
-1.00000000000000000335355606599927526,
321+0.108472542273474053061394483809842788E-16,
+0.999999999999999996646443934000722236,
322+0.108472542273474053061394483809842788E-16,
-0.999999999999999996646443934000722236
324-0.770371977754894341222391177033970927E-32,
+0.00000000000000000000000000000000000,
325-0.308148791101957736488956470813588371E-32,
+0.635981983657862231619686642857405375E-32,
326-0.308148791101957736488956470813588371E-32,
-0.635981983657862231619686642857405375E-32,
327-0.308148791101957736488956470813588371E-32,
+0.597463384770117558391908329517715426E-32,
328-0.308148791101957736488956470813588371E-32,
-0.597463384770117558391908329517715426E-32
349[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
355+9.70840931,
+0.304670960,
356+9.70840931,
-0.304670960,
357+7.47363091,
+0.879458010,
358+7.47363091,
-0.879458010,
359+5.34100008,
+0.00000000,
360+5.26379681,
+0.00000000,
361+4.04746771,
+0.00000000,
362+2.98188233,
+0.00000000,
363+2.00178838,
+0.00000000,
364+0.999977231,
+0.00000000
366-68181.5000,
-14448.8984,
367-68181.5000,
+14448.8984,
368-8617.75000,
-8708.84375,
369-8617.75000,
+8708.84375,
370-810.250000,
+0.00000000,
371-735.250000,
+0.00000000,
372+180.500000,
+0.00000000,
373+180.250000,
+0.00000000,
374+72.2500000,
+0.00000000,
375+8.25000000,
+0.00000000
391[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
397+10.000000000095149,
+0.0000000000000000,
398+8.9999999996955644,
+0.0000000000000000,
399+8.0000000003491696,
+0.0000000000000000,
400+6.9999999998340323,
+0.0000000000000000,
401+6.0000000000428484,
+0.0000000000000000,
402+4.9999999999586162,
+0.0000000000000000,
403+4.0000000000353024,
+0.0000000000000000,
404+2.9999999999877933,
+0.0000000000000000,
405+2.0000000000016263,
+0.0000000000000000,
406+0.99999999999994482,
+0.0000000000000000
408+0.19303057342767715E-4,
+0.0000000000000000,
409+0.10346993803977966E-4,
+0.0000000000000000,
410+0.66170468926429749E-5,
+0.0000000000000000,
411+0.89593231678009033E-6,
+0.0000000000000000,
412-0.75763091444969177E-6,
+0.0000000000000000,
413+0.10197982192039490E-6,
+0.0000000000000000,
414+0.14528632164001465E-6,
+0.0000000000000000,
415+0.85681676864624023E-7,
+0.0000000000000000,
416+0.70314854383468628E-7,
+0.0000000000000000,
417+0.19557774066925049E-7,
+0.0000000000000000
421+3628800.00000000000000000000000000000,
422-10628640.0000000000000000000000000000,
423+12753576.0000000000000000000000000000,
424-8409500.00000000000000000000000000000,
425+3416930.00000000000000000000000000000,
426-902055.000000000000000000000000000000,
427+157773.000000000000000000000000000000,
428-18150.0000000000000000000000000000000,
429+1320.00000000000000000000000000000000,
430-55.0000000000000000000000000000000000,
431+1.00000000000000000000000000000000000
433[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
439+10.0000000000000000000000000000517967,
+0.00000000000000000000000000000000000,
440+8.99999999999999999999999999958200849,
+0.00000000000000000000000000000000000,
441+8.00000000000000000000000000123870575,
+0.00000000000000000000000000000000000,
442+6.99999999999999999999999999814682938,
+0.00000000000000000000000000000000000,
443+6.00000000000000000000000000155546576,
+0.00000000000000000000000000000000000,
444+4.99999999999999999999999999924843974,
+0.00000000000000000000000000000000000,
445+4.00000000000000000000000000020351610,
+0.00000000000000000000000000000000000,
446+2.99999999999999999999999999997156942,
+0.00000000000000000000000000000000000,
447+2.00000000000000000000000000000172640,
+0.00000000000000000000000000000000000,
448+0.999999999999999999999999999999968030,
+0.00000000000000000000000000000000000
450+0.190570619346140160075476935146177038E-22,
+0.00000000000000000000000000000000000,
451+0.106701452257938892161879271616720111E-22,
+0.00000000000000000000000000000000000,
452+0.119020304153870212515188824892176100E-22,
+0.00000000000000000000000000000000000,
453+0.954246540633683195630463953068600702E-23,
+0.00000000000000000000000000000000000,
454+0.456645703394752484965632161745263673E-23,
+0.00000000000000000000000000000000000,
455+0.212247759715144552316858040860725332E-23,
+0.00000000000000000000000000000000000,
456+0.846163761376266102956836528264927821E-24,
+0.00000000000000000000000000000000000,
457+0.307365452223073271766182624348262564E-24,
+0.00000000000000000000000000000000000,
458+0.666429692730710773211828291950897807E-25,
+0.00000000000000000000000000000000000,
459+0.117130067207215832867533457373188099E-25,
+0.00000000000000000000000000000000000
475[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
481+9.70840931,
+0.304670960,
482+9.70840931,
-0.304670960,
483+7.47363091,
+0.879458010,
484+7.47363091,
-0.879458010,
485+5.34100008,
+0.00000000,
486+5.26379681,
+0.00000000,
487+4.04746771,
+0.00000000,
488+2.98188233,
+0.00000000,
489+2.00178838,
+0.00000000,
490+0.999977231,
+0.00000000
492-68181.5000,
-14448.8984,
493-68181.5000,
+14448.8984,
494-8617.75000,
-8708.84375,
495-8617.75000,
+8708.84375,
496-810.250000,
+0.00000000,
497-735.250000,
+0.00000000,
498+180.500000,
+0.00000000,
499+180.250000,
+0.00000000,
500+72.2500000,
+0.00000000,
501+8.25000000,
+0.00000000
517[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
523+10.000000000095149,
+0.0000000000000000,
524+8.9999999996955644,
+0.0000000000000000,
525+8.0000000003491696,
+0.0000000000000000,
526+6.9999999998340323,
+0.0000000000000000,
527+6.0000000000428484,
+0.0000000000000000,
528+4.9999999999586162,
+0.0000000000000000,
529+4.0000000000353024,
+0.0000000000000000,
530+2.9999999999877933,
+0.0000000000000000,
531+2.0000000000016263,
+0.0000000000000000,
532+0.99999999999994482,
+0.0000000000000000
534+0.19303057342767715E-4,
+0.0000000000000000,
535+0.10346993803977966E-4,
+0.0000000000000000,
536+0.66170468926429749E-5,
+0.0000000000000000,
537+0.89593231678009033E-6,
+0.0000000000000000,
538-0.75763091444969177E-6,
+0.0000000000000000,
539+0.10197982192039490E-6,
+0.0000000000000000,
540+0.14528632164001465E-6,
+0.0000000000000000,
541+0.85681676864624023E-7,
+0.0000000000000000,
542+0.70314854383468628E-7,
+0.0000000000000000,
543+0.19557774066925049E-7,
+0.0000000000000000
547+3628800.00000000000000000000000000000,
548-10628640.0000000000000000000000000000,
549+12753576.0000000000000000000000000000,
550-8409500.00000000000000000000000000000,
551+3416930.00000000000000000000000000000,
552-902055.000000000000000000000000000000,
553+157773.000000000000000000000000000000,
554-18150.0000000000000000000000000000000,
555+1320.00000000000000000000000000000000,
556-55.0000000000000000000000000000000000,
557+1.00000000000000000000000000000000000
559[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
565+10.0000000000000000000000000000517967,
+0.00000000000000000000000000000000000,
566+8.99999999999999999999999999958200849,
+0.00000000000000000000000000000000000,
567+8.00000000000000000000000000123870575,
+0.00000000000000000000000000000000000,
568+6.99999999999999999999999999814682938,
+0.00000000000000000000000000000000000,
569+6.00000000000000000000000000155546576,
+0.00000000000000000000000000000000000,
570+4.99999999999999999999999999924843974,
+0.00000000000000000000000000000000000,
571+4.00000000000000000000000000020351610,
+0.00000000000000000000000000000000000,
572+2.99999999999999999999999999997156942,
+0.00000000000000000000000000000000000,
573+2.00000000000000000000000000000172640,
+0.00000000000000000000000000000000000,
574+0.999999999999999999999999999999968030,
+0.00000000000000000000000000000000000
576+0.190570619346140160075476935146177038E-22,
+0.00000000000000000000000000000000000,
577+0.106701452257938892161879271616720111E-22,
+0.00000000000000000000000000000000000,
578+0.119020304153870212515188824892176100E-22,
+0.00000000000000000000000000000000000,
579+0.954246540633683195630463953068600702E-23,
+0.00000000000000000000000000000000000,
580+0.456645703394752484965632161745263673E-23,
+0.00000000000000000000000000000000000,
581+0.212247759715144552316858040860725332E-23,
+0.00000000000000000000000000000000000,
582+0.846163761376266102956836528264927821E-24,
+0.00000000000000000000000000000000000,
583+0.307365452223073271766182624348262564E-24,
+0.00000000000000000000000000000000000,
584+0.666429692730710773211828291950897807E-25,
+0.00000000000000000000000000000000000,
585+0.117130067207215832867533457373188099E-25,
+0.00000000000000000000000000000000000
601[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
607+9.70840931,
+0.304670960,
608+9.70840931,
-0.304670960,
609+7.47363091,
+0.879458010,
610+7.47363091,
-0.879458010,
611+5.34100008,
+0.00000000,
612+5.26379681,
+0.00000000,
613+4.04746771,
+0.00000000,
614+2.98188233,
+0.00000000,
615+2.00178838,
+0.00000000,
616+0.999977231,
+0.00000000
618-68181.5000,
-14448.8984,
619-68181.5000,
+14448.8984,
620-8617.75000,
-8708.84375,
621-8617.75000,
+8708.84375,
622-810.250000,
+0.00000000,
623-735.250000,
+0.00000000,
624+180.500000,
+0.00000000,
625+180.250000,
+0.00000000,
626+72.2500000,
+0.00000000,
627+8.25000000,
+0.00000000
643[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
649+10.000000000095149,
+0.0000000000000000,
650+8.9999999996955644,
+0.0000000000000000,
651+8.0000000003491696,
+0.0000000000000000,
652+6.9999999998340323,
+0.0000000000000000,
653+6.0000000000428484,
+0.0000000000000000,
654+4.9999999999586162,
+0.0000000000000000,
655+4.0000000000353024,
+0.0000000000000000,
656+2.9999999999877933,
+0.0000000000000000,
657+2.0000000000016263,
+0.0000000000000000,
658+0.99999999999994482,
+0.0000000000000000
660+0.19303057342767715E-4,
+0.0000000000000000,
661+0.10346993803977966E-4,
+0.0000000000000000,
662+0.66170468926429749E-5,
+0.0000000000000000,
663+0.89593231678009033E-6,
+0.0000000000000000,
664-0.75763091444969177E-6,
+0.0000000000000000,
665+0.10197982192039490E-6,
+0.0000000000000000,
666+0.14528632164001465E-6,
+0.0000000000000000,
667+0.85681676864624023E-7,
+0.0000000000000000,
668+0.70314854383468628E-7,
+0.0000000000000000,
669+0.19557774066925049E-7,
+0.0000000000000000
673+3628800.00000000000000000000000000000,
674-10628640.0000000000000000000000000000,
675+12753576.0000000000000000000000000000,
676-8409500.00000000000000000000000000000,
677+3416930.00000000000000000000000000000,
678-902055.000000000000000000000000000000,
679+157773.000000000000000000000000000000,
680-18150.0000000000000000000000000000000,
681+1320.00000000000000000000000000000000,
682-55.0000000000000000000000000000000000,
683+1.00000000000000000000000000000000000
685[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
691+10.0000000000000000000000000000517967,
+0.00000000000000000000000000000000000,
692+8.99999999999999999999999999958200849,
+0.00000000000000000000000000000000000,
693+8.00000000000000000000000000123870575,
+0.00000000000000000000000000000000000,
694+6.99999999999999999999999999814682938,
+0.00000000000000000000000000000000000,
695+6.00000000000000000000000000155546576,
+0.00000000000000000000000000000000000,
696+4.99999999999999999999999999924843974,
+0.00000000000000000000000000000000000,
697+4.00000000000000000000000000020351610,
+0.00000000000000000000000000000000000,
698+2.99999999999999999999999999997156942,
+0.00000000000000000000000000000000000,
699+2.00000000000000000000000000000172640,
+0.00000000000000000000000000000000000,
700+0.999999999999999999999999999999968030,
+0.00000000000000000000000000000000000
702+0.190570619346140160075476935146177038E-22,
+0.00000000000000000000000000000000000,
703+0.106701452257938892161879271616720111E-22,
+0.00000000000000000000000000000000000,
704+0.119020304153870212515188824892176100E-22,
+0.00000000000000000000000000000000000,
705+0.954246540633683195630463953068600702E-23,
+0.00000000000000000000000000000000000,
706+0.456645703394752484965632161745263673E-23,
+0.00000000000000000000000000000000000,
707+0.212247759715144552316858040860725332E-23,
+0.00000000000000000000000000000000000,
708+0.846163761376266102956836528264927821E-24,
+0.00000000000000000000000000000000000,
709+0.307365452223073271766182624348262564E-24,
+0.00000000000000000000000000000000000,
710+0.666429692730710773211828291950897807E-25,
+0.00000000000000000000000000000000000,
711+0.117130067207215832867533457373188099E-25,
+0.00000000000000000000000000000000000
727[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
733+9.70840931,
+0.304670960,
734+9.70840931,
-0.304670960,
735+7.47363091,
+0.879458010,
736+7.47363091,
-0.879458010,
737+5.34100008,
+0.00000000,
738+5.26379681,
+0.00000000,
739+4.04746771,
+0.00000000,
740+2.98188233,
+0.00000000,
741+2.00178838,
+0.00000000,
742+0.999977231,
+0.00000000
744-68181.5000,
-14448.8984,
745-68181.5000,
+14448.8984,
746-8617.75000,
-8708.84375,
747-8617.75000,
+8708.84375,
748-810.250000,
+0.00000000,
749-735.250000,
+0.00000000,
750+180.500000,
+0.00000000,
751+180.250000,
+0.00000000,
752+72.2500000,
+0.00000000,
753+8.25000000,
+0.00000000
769[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
775+10.000000000095149,
+0.0000000000000000,
776+8.9999999996955644,
+0.0000000000000000,
777+8.0000000003491696,
+0.0000000000000000,
778+6.9999999998340323,
+0.0000000000000000,
779+6.0000000000428484,
+0.0000000000000000,
780+4.9999999999586162,
+0.0000000000000000,
781+4.0000000000353024,
+0.0000000000000000,
782+2.9999999999877933,
+0.0000000000000000,
783+2.0000000000016263,
+0.0000000000000000,
784+0.99999999999994482,
+0.0000000000000000
786+0.19303057342767715E-4,
+0.0000000000000000,
787+0.10346993803977966E-4,
+0.0000000000000000,
788+0.66170468926429749E-5,
+0.0000000000000000,
789+0.89593231678009033E-6,
+0.0000000000000000,
790-0.75763091444969177E-6,
+0.0000000000000000,
791+0.10197982192039490E-6,
+0.0000000000000000,
792+0.14528632164001465E-6,
+0.0000000000000000,
793+0.85681676864624023E-7,
+0.0000000000000000,
794+0.70314854383468628E-7,
+0.0000000000000000,
795+0.19557774066925049E-7,
+0.0000000000000000
799+3628800.00000000000000000000000000000,
800-10628640.0000000000000000000000000000,
801+12753576.0000000000000000000000000000,
802-8409500.00000000000000000000000000000,
803+3416930.00000000000000000000000000000,
804-902055.000000000000000000000000000000,
805+157773.000000000000000000000000000000,
806-18150.0000000000000000000000000000000,
807+1320.00000000000000000000000000000000,
808-55.0000000000000000000000000000000000,
809+1.00000000000000000000000000000000000
811[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
817+10.0000000000000000000000000000517967,
+0.00000000000000000000000000000000000,
818+8.99999999999999999999999999958200849,
+0.00000000000000000000000000000000000,
819+8.00000000000000000000000000123870575,
+0.00000000000000000000000000000000000,
820+6.99999999999999999999999999814682938,
+0.00000000000000000000000000000000000,
821+6.00000000000000000000000000155546576,
+0.00000000000000000000000000000000000,
822+4.99999999999999999999999999924843974,
+0.00000000000000000000000000000000000,
823+4.00000000000000000000000000020351610,
+0.00000000000000000000000000000000000,
824+2.99999999999999999999999999997156942,
+0.00000000000000000000000000000000000,
825+2.00000000000000000000000000000172640,
+0.00000000000000000000000000000000000,
826+0.999999999999999999999999999999968030,
+0.00000000000000000000000000000000000
828+0.190570619346140160075476935146177038E-22,
+0.00000000000000000000000000000000000,
829+0.106701452257938892161879271616720111E-22,
+0.00000000000000000000000000000000000,
830+0.119020304153870212515188824892176100E-22,
+0.00000000000000000000000000000000000,
831+0.954246540633683195630463953068600702E-23,
+0.00000000000000000000000000000000000,
832+0.456645703394752484965632161745263673E-23,
+0.00000000000000000000000000000000000,
833+0.212247759715144552316858040860725332E-23,
+0.00000000000000000000000000000000000,
834+0.846163761376266102956836528264927821E-24,
+0.00000000000000000000000000000000000,
835+0.307365452223073271766182624348262564E-24,
+0.00000000000000000000000000000000000,
836+0.666429692730710773211828291950897807E-25,
+0.00000000000000000000000000000000000,
837+0.117130067207215832867533457373188099E-25,
+0.00000000000000000000000000000000000
846+3628800.00,
+0.00000000,
847-10628640.0,
+0.00000000,
848+12753576.0,
+0.00000000,
849-8409500.00,
+0.00000000,
850+3416930.00,
+0.00000000,
851-902055.000,
+0.00000000,
852+157773.000,
+0.00000000,
853-18150.0000,
+0.00000000,
854+1320.00000,
+0.00000000,
855-55.0000000,
+0.00000000,
856+1.00000000,
+0.00000000
858[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
864+9.99373722,
+0.196921639E-2,
865+9.07808781,
-0.768133765E-2,
866+7.58786488,
+0.259252965,
867+7.53517246,
-0.258893400,
868+5.48630047,
+0.496490821E-1,
869+5.36296797,
-0.451893099E-1,
870+3.94950104,
+0.102348044E-2,
871+3.00655532,
-0.139494587E-3,
872+1.99981821,
+0.898552662E-5,
873+0.999996662,
-0.528134251E-6
875-4153.50000,
+685.126953,
876+1293.75000,
+363.354248,
877-3629.75000,
-342.171875,
878-2187.25000,
+294.710938,
879-1123.75000,
-18.1875000,
880-459.750000,
+35.3359375,
881-246.750000,
+4.63513184,
882-61.2500000,
+1.38377380,
883-6.00000000,
+0.362543106,
884+0.500000000,
+0.191653848
888+3628800.0000000000,
+0.0000000000000000,
889-10628640.000000000,
+0.0000000000000000,
890+12753576.000000000,
+0.0000000000000000,
891-8409500.0000000000,
+0.0000000000000000,
892+3416930.0000000000,
+0.0000000000000000,
893-902055.00000000000,
+0.0000000000000000,
894+157773.00000000000,
+0.0000000000000000,
895-18150.000000000000,
+0.0000000000000000,
896+1320.0000000000000,
+0.0000000000000000,
897-55.000000000000000,
+0.0000000000000000,
898+1.0000000000000000,
+0.0000000000000000
900[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
906+10.000000000092832,
+0.14674683172918083E-11,
907+8.9999999995494910,
-0.78513163716371057E-11,
908+8.0000000009219665,
+0.18126945817416554E-10,
909+6.9999999989793631,
-0.23471195338655758E-10,
910+6.0000000006482752,
+0.18575051340220250E-10,
911+4.9999999997713829,
-0.92418512141289470E-11,
912+4.0000000000382663,
+0.28926396100133261E-11,
913+2.9999999999985825,
-0.54892097595564787E-12,
914+1.9999999999998195,
+0.51688262166740718E-13,
915+1.0000000000000040,
-0.69823506140973722E-15
917+0.21335668861865997E-4,
+0.53251490324658425E-6,
918+0.15214085578918457E-4,
+0.31656507562992751E-6,
919+0.12007541954517365E-4,
+0.18271961426412876E-6,
920+0.43502077460289001E-5,
+0.10139556374739953E-6,
921+0.16265548765659332E-5,
+0.53496147868086052E-7,
922+0.96531584858894348E-6,
+0.26616531495547122E-7,
923+0.16111880540847778E-6,
+0.12496203114631699E-7,
924-0.93132257461547852E-9,
+0.55331234376599884E-8,
925-0.79162418842315674E-8,
+0.20840707305641930E-8,
926-0.23283064365386963E-8,
+0.25337553908436255E-9
930+3628800.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
931-10628640.0000000000000000000000000000,
+0.00000000000000000000000000000000000,
932+12753576.0000000000000000000000000000,
+0.00000000000000000000000000000000000,
933-8409500.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
934+3416930.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
935-902055.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
936+157773.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
937-18150.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
938+1320.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
939-55.0000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
940+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
942[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
948+10.0000000000000000000000000001225200,
+0.509435088823196545261926980817026425E-30,
949+8.99999999999999999999999999940435917,
-0.209995537749767662358226781607926446E-29,
950+8.00000000000000000000000000121674245,
+0.343592927705395245870133814335134133E-29,
951+6.99999999999999999999999999865599133,
-0.302445729136684007599014761793556296E-29,
952+6.00000000000000000000000000086041537,
+0.192719830774026860653879227602749694E-29,
953+4.99999999999999999999999999968191341,
-0.123024474772112043974718002090415763E-29,
954+4.00000000000000000000000000006421590,
+0.652456748571305541599111900496149722E-30,
955+2.99999999999999999999999999999352079,
-0.193766393931633696713588827264264386E-30,
956+2.00000000000000000000000000000033781,
+0.237223756726557254262497294342951649E-31,
957+0.999999999999999999999999999999990659,
-0.651188212631313945515795127577401738E-33
959+0.382902228668223289224410580203206145E-22,
+0.184863805032161562344648062924845379E-24,
960+0.258530292133333732621308588724151623E-22,
+0.846702008207063214628370381684629456E-25,
961+0.141743537192070084091490315622574592E-22,
+0.346341671127038407837094885825177763E-25,
962+0.442428536616497321803779824850311186E-23,
+0.130656554987047491282774376921933986E-25,
963+0.197545916796721599501760737935263101E-23,
+0.555033112629197358683172175557306576E-26,
964+0.891804097908732961970737496137928702E-24,
+0.354310487343682686647187846065246503E-26,
965+0.246780934702099565110561870534544582E-24,
+0.281861315382803993970816340989114052E-26,
966+0.727014210251684479867449045764615789E-25,
+0.195316525083086766287297537885110653E-26,
967+0.137324906380873735086073708644427427E-25,
+0.956486187121478849186389090789675841E-27,
968+0.323117426778526435496644020339829240E-26,
+0.236303178599651204548771735895300922E-27
972+3628800.00,
+0.00000000,
973-10628640.0,
+0.00000000,
974+12753576.0,
+0.00000000,
975-8409500.00,
+0.00000000,
976+3416930.00,
+0.00000000,
977-902055.000,
+0.00000000,
978+157773.000,
+0.00000000,
979-18150.0000,
+0.00000000,
980+1320.00000,
+0.00000000,
981-55.0000000,
+0.00000000,
982+1.00000000,
+0.00000000
984[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
990+9.99373722,
+0.196921639E-2,
991+9.07808781,
-0.768133765E-2,
992+7.58786488,
+0.259252965,
993+7.53517246,
-0.258893400,
994+5.48630047,
+0.496490821E-1,
995+5.36296797,
-0.451893099E-1,
996+3.94950104,
+0.102348044E-2,
997+3.00655532,
-0.139494587E-3,
998+1.99981821,
+0.898552662E-5,
999+0.999996662,
-0.528134251E-6
1001-4153.50000,
+685.126953,
1002+1293.75000,
+363.354248,
1003-3629.75000,
-342.171875,
1004-2187.25000,
+294.710938,
1005-1123.75000,
-18.1875000,
1006-459.750000,
+35.3359375,
1007-246.750000,
+4.63513184,
1008-61.2500000,
+1.38377380,
1009-6.00000000,
+0.362543106,
1010+0.500000000,
+0.191653848
1014+3628800.0000000000,
+0.0000000000000000,
1015-10628640.000000000,
+0.0000000000000000,
1016+12753576.000000000,
+0.0000000000000000,
1017-8409500.0000000000,
+0.0000000000000000,
1018+3416930.0000000000,
+0.0000000000000000,
1019-902055.00000000000,
+0.0000000000000000,
1020+157773.00000000000,
+0.0000000000000000,
1021-18150.000000000000,
+0.0000000000000000,
1022+1320.0000000000000,
+0.0000000000000000,
1023-55.000000000000000,
+0.0000000000000000,
1024+1.0000000000000000,
+0.0000000000000000
1026[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1032+10.000000000092832,
+0.14674683172918083E-11,
1033+8.9999999995494910,
-0.78513163716371057E-11,
1034+8.0000000009219665,
+0.18126945817416554E-10,
1035+6.9999999989793631,
-0.23471195338655758E-10,
1036+6.0000000006482752,
+0.18575051340220250E-10,
1037+4.9999999997713829,
-0.92418512141289470E-11,
1038+4.0000000000382663,
+0.28926396100133261E-11,
1039+2.9999999999985825,
-0.54892097595564787E-12,
1040+1.9999999999998195,
+0.51688262166740718E-13,
1041+1.0000000000000040,
-0.69823506140973722E-15
1043+0.21335668861865997E-4,
+0.53251490324658425E-6,
1044+0.15214085578918457E-4,
+0.31656507562992751E-6,
1045+0.12007541954517365E-4,
+0.18271961426412876E-6,
1046+0.43502077460289001E-5,
+0.10139556374739953E-6,
1047+0.16265548765659332E-5,
+0.53496147868086052E-7,
1048+0.96531584858894348E-6,
+0.26616531495547122E-7,
1049+0.16111880540847778E-6,
+0.12496203114631699E-7,
1050-0.93132257461547852E-9,
+0.55331234376599884E-8,
1051-0.79162418842315674E-8,
+0.20840707305641930E-8,
1052-0.23283064365386963E-8,
+0.25337553908436255E-9
1056+3628800.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
1057-10628640.0000000000000000000000000000,
+0.00000000000000000000000000000000000,
1058+12753576.0000000000000000000000000000,
+0.00000000000000000000000000000000000,
1059-8409500.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
1060+3416930.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
1061-902055.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1062+157773.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1063-18150.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1064+1320.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1065-55.0000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1066+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1068[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1074+10.0000000000000000000000000001225200,
+0.509435088823196545261926980817026425E-30,
1075+8.99999999999999999999999999940435917,
-0.209995537749767662358226781607926446E-29,
1076+8.00000000000000000000000000121674245,
+0.343592927705395245870133814335134133E-29,
1077+6.99999999999999999999999999865599133,
-0.302445729136684007599014761793556296E-29,
1078+6.00000000000000000000000000086041537,
+0.192719830774026860653879227602749694E-29,
1079+4.99999999999999999999999999968191341,
-0.123024474772112043974718002090415763E-29,
1080+4.00000000000000000000000000006421590,
+0.652456748571305541599111900496149722E-30,
1081+2.99999999999999999999999999999352079,
-0.193766393931633696713588827264264386E-30,
1082+2.00000000000000000000000000000033781,
+0.237223756726557254262497294342951649E-31,
1083+0.999999999999999999999999999999990659,
-0.651188212631313945515795127577401738E-33
1085+0.382902228668223289224410580203206145E-22,
+0.184863805032161562344648062924845379E-24,
1086+0.258530292133333732621308588724151623E-22,
+0.846702008207063214628370381684629456E-25,
1087+0.141743537192070084091490315622574592E-22,
+0.346341671127038407837094885825177763E-25,
1088+0.442428536616497321803779824850311186E-23,
+0.130656554987047491282774376921933986E-25,
1089+0.197545916796721599501760737935263101E-23,
+0.555033112629197358683172175557306576E-26,
1090+0.891804097908732961970737496137928702E-24,
+0.354310487343682686647187846065246503E-26,
1091+0.246780934702099565110561870534544582E-24,
+0.281861315382803993970816340989114052E-26,
1092+0.727014210251684479867449045764615789E-25,
+0.195316525083086766287297537885110653E-26,
1093+0.137324906380873735086073708644427427E-25,
+0.956486187121478849186389090789675841E-27,
1094+0.323117426778526435496644020339829240E-26,
+0.236303178599651204548771735895300922E-27
1098+3628800.00,
+0.00000000,
1099-10628640.0,
+0.00000000,
1100+12753576.0,
+0.00000000,
1101-8409500.00,
+0.00000000,
1102+3416930.00,
+0.00000000,
1103-902055.000,
+0.00000000,
1104+157773.000,
+0.00000000,
1105-18150.0000,
+0.00000000,
1106+1320.00000,
+0.00000000,
1107-55.0000000,
+0.00000000,
1108+1.00000000,
+0.00000000
1110[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1116+9.99373722,
+0.196921639E-2,
1117+9.07808781,
-0.768133765E-2,
1118+7.58786488,
+0.259252965,
1119+7.53517246,
-0.258893400,
1120+5.48630047,
+0.496490821E-1,
1121+5.36296797,
-0.451893099E-1,
1122+3.94950104,
+0.102348044E-2,
1123+3.00655532,
-0.139494587E-3,
1124+1.99981821,
+0.898552662E-5,
1125+0.999996662,
-0.528134251E-6
1127-4153.50000,
+685.126953,
1128+1293.75000,
+363.354248,
1129-3629.75000,
-342.171875,
1130-2187.25000,
+294.710938,
1131-1123.75000,
-18.1875000,
1132-459.750000,
+35.3359375,
1133-246.750000,
+4.63513184,
1134-61.2500000,
+1.38377380,
1135-6.00000000,
+0.362543106,
1136+0.500000000,
+0.191653848
1140+3628800.0000000000,
+0.0000000000000000,
1141-10628640.000000000,
+0.0000000000000000,
1142+12753576.000000000,
+0.0000000000000000,
1143-8409500.0000000000,
+0.0000000000000000,
1144+3416930.0000000000,
+0.0000000000000000,
1145-902055.00000000000,
+0.0000000000000000,
1146+157773.00000000000,
+0.0000000000000000,
1147-18150.000000000000,
+0.0000000000000000,
1148+1320.0000000000000,
+0.0000000000000000,
1149-55.000000000000000,
+0.0000000000000000,
1150+1.0000000000000000,
+0.0000000000000000
1152[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1158+10.000000000092832,
+0.14674683172918083E-11,
1159+8.9999999995494910,
-0.78513163716371057E-11,
1160+8.0000000009219665,
+0.18126945817416554E-10,
1161+6.9999999989793631,
-0.23471195338655758E-10,
1162+6.0000000006482752,
+0.18575051340220250E-10,
1163+4.9999999997713829,
-0.92418512141289470E-11,
1164+4.0000000000382663,
+0.28926396100133261E-11,
1165+2.9999999999985825,
-0.54892097595564787E-12,
1166+1.9999999999998195,
+0.51688262166740718E-13,
1167+1.0000000000000040,
-0.69823506140973722E-15
1169+0.21335668861865997E-4,
+0.53251490324658425E-6,
1170+0.15214085578918457E-4,
+0.31656507562992751E-6,
1171+0.12007541954517365E-4,
+0.18271961426412876E-6,
1172+0.43502077460289001E-5,
+0.10139556374739953E-6,
1173+0.16265548765659332E-5,
+0.53496147868086052E-7,
1174+0.96531584858894348E-6,
+0.26616531495547122E-7,
1175+0.16111880540847778E-6,
+0.12496203114631699E-7,
1176-0.93132257461547852E-9,
+0.55331234376599884E-8,
1177-0.79162418842315674E-8,
+0.20840707305641930E-8,
1178-0.23283064365386963E-8,
+0.25337553908436255E-9
1182+3628800.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
1183-10628640.0000000000000000000000000000,
+0.00000000000000000000000000000000000,
1184+12753576.0000000000000000000000000000,
+0.00000000000000000000000000000000000,
1185-8409500.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
1186+3416930.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
1187-902055.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1188+157773.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1189-18150.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1190+1320.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1191-55.0000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1192+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1194[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1200+10.0000000000000000000000000001225200,
+0.509435088823196545261926980817026425E-30,
1201+8.99999999999999999999999999940435917,
-0.209995537749767662358226781607926446E-29,
1202+8.00000000000000000000000000121674245,
+0.343592927705395245870133814335134133E-29,
1203+6.99999999999999999999999999865599133,
-0.302445729136684007599014761793556296E-29,
1204+6.00000000000000000000000000086041537,
+0.192719830774026860653879227602749694E-29,
1205+4.99999999999999999999999999968191341,
-0.123024474772112043974718002090415763E-29,
1206+4.00000000000000000000000000006421590,
+0.652456748571305541599111900496149722E-30,
1207+2.99999999999999999999999999999352079,
-0.193766393931633696713588827264264386E-30,
1208+2.00000000000000000000000000000033781,
+0.237223756726557254262497294342951649E-31,
1209+0.999999999999999999999999999999990659,
-0.651188212631313945515795127577401738E-33
1211+0.382902228668223289224410580203206145E-22,
+0.184863805032161562344648062924845379E-24,
1212+0.258530292133333732621308588724151623E-22,
+0.846702008207063214628370381684629456E-25,
1213+0.141743537192070084091490315622574592E-22,
+0.346341671127038407837094885825177763E-25,
1214+0.442428536616497321803779824850311186E-23,
+0.130656554987047491282774376921933986E-25,
1215+0.197545916796721599501760737935263101E-23,
+0.555033112629197358683172175557306576E-26,
1216+0.891804097908732961970737496137928702E-24,
+0.354310487343682686647187846065246503E-26,
1217+0.246780934702099565110561870534544582E-24,
+0.281861315382803993970816340989114052E-26,
1218+0.727014210251684479867449045764615789E-25,
+0.195316525083086766287297537885110653E-26,
1219+0.137324906380873735086073708644427427E-25,
+0.956486187121478849186389090789675841E-27,
1220+0.323117426778526435496644020339829240E-26,
+0.236303178599651204548771735895300922E-27
1224+3628800.00,
+0.00000000,
1225-10628640.0,
+0.00000000,
1226+12753576.0,
+0.00000000,
1227-8409500.00,
+0.00000000,
1228+3416930.00,
+0.00000000,
1229-902055.000,
+0.00000000,
1230+157773.000,
+0.00000000,
1231-18150.0000,
+0.00000000,
1232+1320.00000,
+0.00000000,
1233-55.0000000,
+0.00000000,
1234+1.00000000,
+0.00000000
1236[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1242+9.99373722,
+0.196921639E-2,
1243+9.07808781,
-0.768133765E-2,
1244+7.58786488,
+0.259252965,
1245+7.53517246,
-0.258893400,
1246+5.48630047,
+0.496490821E-1,
1247+5.36296797,
-0.451893099E-1,
1248+3.94950104,
+0.102348044E-2,
1249+3.00655532,
-0.139494587E-3,
1250+1.99981821,
+0.898552662E-5,
1251+0.999996662,
-0.528134251E-6
1253-4153.50000,
+685.126953,
1254+1293.75000,
+363.354248,
1255-3629.75000,
-342.171875,
1256-2187.25000,
+294.710938,
1257-1123.75000,
-18.1875000,
1258-459.750000,
+35.3359375,
1259-246.750000,
+4.63513184,
1260-61.2500000,
+1.38377380,
1261-6.00000000,
+0.362543106,
1262+0.500000000,
+0.191653848
1266+3628800.0000000000,
+0.0000000000000000,
1267-10628640.000000000,
+0.0000000000000000,
1268+12753576.000000000,
+0.0000000000000000,
1269-8409500.0000000000,
+0.0000000000000000,
1270+3416930.0000000000,
+0.0000000000000000,
1271-902055.00000000000,
+0.0000000000000000,
1272+157773.00000000000,
+0.0000000000000000,
1273-18150.000000000000,
+0.0000000000000000,
1274+1320.0000000000000,
+0.0000000000000000,
1275-55.000000000000000,
+0.0000000000000000,
1276+1.0000000000000000,
+0.0000000000000000
1278[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1284+10.000000000092832,
+0.14674683172918083E-11,
1285+8.9999999995494910,
-0.78513163716371057E-11,
1286+8.0000000009219665,
+0.18126945817416554E-10,
1287+6.9999999989793631,
-0.23471195338655758E-10,
1288+6.0000000006482752,
+0.18575051340220250E-10,
1289+4.9999999997713829,
-0.92418512141289470E-11,
1290+4.0000000000382663,
+0.28926396100133261E-11,
1291+2.9999999999985825,
-0.54892097595564787E-12,
1292+1.9999999999998195,
+0.51688262166740718E-13,
1293+1.0000000000000040,
-0.69823506140973722E-15
1295+0.21335668861865997E-4,
+0.53251490324658425E-6,
1296+0.15214085578918457E-4,
+0.31656507562992751E-6,
1297+0.12007541954517365E-4,
+0.18271961426412876E-6,
1298+0.43502077460289001E-5,
+0.10139556374739953E-6,
1299+0.16265548765659332E-5,
+0.53496147868086052E-7,
1300+0.96531584858894348E-6,
+0.26616531495547122E-7,
1301+0.16111880540847778E-6,
+0.12496203114631699E-7,
1302-0.93132257461547852E-9,
+0.55331234376599884E-8,
1303-0.79162418842315674E-8,
+0.20840707305641930E-8,
1304-0.23283064365386963E-8,
+0.25337553908436255E-9
1308+3628800.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
1309-10628640.0000000000000000000000000000,
+0.00000000000000000000000000000000000,
1310+12753576.0000000000000000000000000000,
+0.00000000000000000000000000000000000,
1311-8409500.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
1312+3416930.00000000000000000000000000000,
+0.00000000000000000000000000000000000,
1313-902055.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1314+157773.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1315-18150.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1316+1320.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1317-55.0000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1318+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1320[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1326+10.0000000000000000000000000001225200,
+0.509435088823196545261926980817026425E-30,
1327+8.99999999999999999999999999940435917,
-0.209995537749767662358226781607926446E-29,
1328+8.00000000000000000000000000121674245,
+0.343592927705395245870133814335134133E-29,
1329+6.99999999999999999999999999865599133,
-0.302445729136684007599014761793556296E-29,
1330+6.00000000000000000000000000086041537,
+0.192719830774026860653879227602749694E-29,
1331+4.99999999999999999999999999968191341,
-0.123024474772112043974718002090415763E-29,
1332+4.00000000000000000000000000006421590,
+0.652456748571305541599111900496149722E-30,
1333+2.99999999999999999999999999999352079,
-0.193766393931633696713588827264264386E-30,
1334+2.00000000000000000000000000000033781,
+0.237223756726557254262497294342951649E-31,
1335+0.999999999999999999999999999999990659,
-0.651188212631313945515795127577401738E-33
1337+0.382902228668223289224410580203206145E-22,
+0.184863805032161562344648062924845379E-24,
1338+0.258530292133333732621308588724151623E-22,
+0.846702008207063214628370381684629456E-25,
1339+0.141743537192070084091490315622574592E-22,
+0.346341671127038407837094885825177763E-25,
1340+0.442428536616497321803779824850311186E-23,
+0.130656554987047491282774376921933986E-25,
1341+0.197545916796721599501760737935263101E-23,
+0.555033112629197358683172175557306576E-26,
1342+0.891804097908732961970737496137928702E-24,
+0.354310487343682686647187846065246503E-26,
1343+0.246780934702099565110561870534544582E-24,
+0.281861315382803993970816340989114052E-26,
1344+0.727014210251684479867449045764615789E-25,
+0.195316525083086766287297537885110653E-26,
1345+0.137324906380873735086073708644427427E-25,
+0.956486187121478849186389090789675841E-27,
1346+0.323117426778526435496644020339829240E-26,
+0.236303178599651204548771735895300922E-27
1355+0.0000000000000000,
+1.0000000000000000,
1356-10001.000099999999,
+0.0000000000000000,
1357+0.0000000000000000,
-10001.000099999999,
1358+1.0000000000000000,
+0.0000000000000000
1360[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1366+0.0000000000000000,
+10000.000000000000,
1367+0.0000000000000000,
+1.0000000000000004,
1368+0.0000000000000000,
+0.10000000000000255E-3
1370+0.0000000000000000,
-0.70715235779061913E-4,
1371+0.0000000000000000,
+0.36375347178818629E-11,
1372+0.0000000000000000,
-0.25535129566378600E-13
1376+0.00000000000000000000000000000000000,
+1.00000000000000000000000000000000000,
1377-10001.0000999999999999999999999999996,
+0.00000000000000000000000000000000000,
1378+0.00000000000000000000000000000000000,
-10001.0000999999999999999999999999996,
1379+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1381[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1387+0.00000000000000000000000000000000000,
+9999.99999999999999999999999999999842,
1388+0.00000000000000000000000000000000000,
+0.999999999999999999999999999999999904,
1389+0.00000000000000000000000000000000000,
+0.100000000000000000000000000000000008E-3
1391+0.00000000000000000000000000000000000,
+0.115351482477835407341207567853721561E-21,
1392+0.00000000000000000000000000000000000,
-0.157752921744758488723815153277131397E-29,
1393+0.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1397+0.0000000000000000,
+1.0000000000000000,
1398-10001.000099999999,
+0.0000000000000000,
1399+0.0000000000000000,
-10001.000099999999,
1400+1.0000000000000000,
+0.0000000000000000
1402[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1408+0.0000000000000000,
+10000.000000000000,
1409+0.0000000000000000,
+1.0000000000000004,
1410+0.0000000000000000,
+0.10000000000000255E-3
1412+0.0000000000000000,
-0.70715235779061913E-4,
1413+0.0000000000000000,
+0.36375347178818629E-11,
1414+0.0000000000000000,
-0.25535129566378600E-13
1418+0.00000000000000000000000000000000000,
+1.00000000000000000000000000000000000,
1419-10001.0000999999999999999999999999996,
+0.00000000000000000000000000000000000,
1420+0.00000000000000000000000000000000000,
-10001.0000999999999999999999999999996,
1421+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1423[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1429+0.00000000000000000000000000000000000,
+9999.99999999999999999999999999999842,
1430+0.00000000000000000000000000000000000,
+0.999999999999999999999999999999999904,
1431+0.00000000000000000000000000000000000,
+0.100000000000000000000000000000000008E-3
1433+0.00000000000000000000000000000000000,
+0.115351482477835407341207567853721561E-21,
1434+0.00000000000000000000000000000000000,
-0.157752921744758488723815153277131397E-29,
1435+0.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1439+0.0000000000000000,
+1.0000000000000000,
1440-10001.000099999999,
+0.0000000000000000,
1441+0.0000000000000000,
-10001.000099999999,
1442+1.0000000000000000,
+0.0000000000000000
1444[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1450+0.0000000000000000,
+10000.000000000000,
1451+0.0000000000000000,
+1.0000000000000004,
1452+0.0000000000000000,
+0.10000000000000255E-3
1454+0.0000000000000000,
-0.70715235779061913E-4,
1455+0.0000000000000000,
+0.36375347178818629E-11,
1456+0.0000000000000000,
-0.25535129566378600E-13
1460+0.00000000000000000000000000000000000,
+1.00000000000000000000000000000000000,
1461-10001.0000999999999999999999999999996,
+0.00000000000000000000000000000000000,
1462+0.00000000000000000000000000000000000,
-10001.0000999999999999999999999999996,
1463+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1465[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1471+0.00000000000000000000000000000000000,
+9999.99999999999999999999999999999842,
1472+0.00000000000000000000000000000000000,
+0.999999999999999999999999999999999904,
1473+0.00000000000000000000000000000000000,
+0.100000000000000000000000000000000008E-3
1475+0.00000000000000000000000000000000000,
+0.115351482477835407341207567853721561E-21,
1476+0.00000000000000000000000000000000000,
-0.157752921744758488723815153277131397E-29,
1477+0.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1481+0.0000000000000000,
+1.0000000000000000,
1482-10001.000099999999,
+0.0000000000000000,
1483+0.0000000000000000,
-10001.000099999999,
1484+1.0000000000000000,
+0.0000000000000000
1486[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1492+0.0000000000000000,
+10000.000000000000,
1493+0.0000000000000000,
+1.0000000000000004,
1494+0.0000000000000000,
+0.10000000000000255E-3
1496+0.0000000000000000,
-0.70715235779061913E-4,
1497+0.0000000000000000,
+0.36375347178818629E-11,
1498+0.0000000000000000,
-0.25535129566378600E-13
1502+0.00000000000000000000000000000000000,
+1.00000000000000000000000000000000000,
1503-10001.0000999999999999999999999999996,
+0.00000000000000000000000000000000000,
1504+0.00000000000000000000000000000000000,
-10001.0000999999999999999999999999996,
1505+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1507[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1513+0.00000000000000000000000000000000000,
+9999.99999999999999999999999999999842,
1514+0.00000000000000000000000000000000000,
+0.999999999999999999999999999999999904,
1515+0.00000000000000000000000000000000000,
+0.100000000000000000000000000000000008E-3
1517+0.00000000000000000000000000000000000,
+0.115351482477835407341207567853721561E-21,
1518+0.00000000000000000000000000000000000,
-0.157752921744758488723815153277131397E-29,
1519+0.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1528+0.0000000000000000,
+0.90949470177292824E-12,
1529-0.46520653995685279E-9,
-0.46520653995685279E-9,
1530+0.15848036127863449E-6,
+0.0000000000000000,
1531-0.11546426321729090E-4,
+0.11546426321729090E-4,
1532+0.0000000000000000,
-0.78207794285845011E-3,
1533+0.12715073651634160E-1,
+0.12715073651634160E-1,
1534-0.20021195337176320,
+0.0000000000000000,
1535+0.75670659542083740,
-0.75670659542083740,
1536+0.0000000000000000,
+2.6588592529296879,
1537-1.9980468750000000,
-1.9980468750000000,
1538+1.0000000000000000,
+0.0000000000000000
1540[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1546+0.99999999999999845,
+0.99999999999999911,
1547+0.50000000000000133,
+0.50000000000000067,
1548+0.25000000000000017,
+0.25000000000000028,
1549+0.12499999999999911,
+0.12499999999999924,
1550+0.62500000000001193E-1,
+0.62500000000001124E-1,
1551+0.31249999999999212E-1,
+0.31249999999999153E-1,
1552+0.15625000000000406E-1,
+0.15625000000000503E-1,
1553+0.78124999999998820E-2,
+0.78124999999998473E-2,
1554+0.39062500000000139E-2,
+0.39062500000000173E-2,
1555+0.19531249999999998E-2,
+0.19531250000000004E-2
1557-0.30312292689246898E-14,
-0.39170764430220062E-14,
1558-0.68538197226804901E-17,
+0.80868759391036751E-17,
1559-0.17941598983115063E-19,
+0.37617071523821058E-19,
1560-0.96831376073107395E-22,
+0.76998478904539376E-22,
1561+0.18929632499428235E-23,
+0.45584800724739300E-23,
1562+0.76689901761965884E-25,
+0.68298946085311025E-24,
1563-0.20598735957131060E-25,
+0.72903369416905027E-25,
1564-0.16155871338926322E-26,
+0.24233807008389483E-26,
1565+0.0000000000000000,
-0.80779356694631609E-27,
1566+0.0000000000000000,
-0.20194839173657902E-27
1570+0.00000000000000000000000000000000000,
+0.909494701772928199999999999999999977E-12,
1571-0.465206539956852800000000000000000002E-9,
-0.465206539956852800000000000000000002E-9,
1572+0.158480361278634500000000000000000004E-6,
+0.00000000000000000000000000000000000,
1573-0.115464263217290900000000000000000001E-4,
+0.115464263217290900000000000000000001E-4,
1574+0.00000000000000000000000000000000000,
-0.782077942858450099999999999999999970E-3,
1575+0.127150736516341599999999999999999998E-1,
+0.127150736516341599999999999999999998E-1,
1576-0.200211953371763200000000000000000000,
+0.00000000000000000000000000000000000,
1577+0.756706595420837399999999999999999953,
-0.756706595420837399999999999999999953,
1578+0.00000000000000000000000000000000000,
+2.65885925292968799999999999999999995,
1579-1.99804687500000000000000000000000000,
-1.99804687500000000000000000000000000,
1580+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1582[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1588+0.999999999999999160184470589450448173,
+0.999999999999999160184470589450448944,
1589+0.500000000000001492398035863052857764,
+0.500000000000001492398035863052858149,
1590+0.249999999999999617367224612848345132,
+0.249999999999999617367224612848344434,
1591+0.124999999999999149032692721659057207,
+0.124999999999999149032692721659057592,
1592+0.625000000000009555071172310128834721E-1,
+0.625000000000009555071172310128834842E-1,
1593+0.312499999999994379028135239093267093E-1,
+0.312499999999994379028135239093266431E-1,
1594+0.156250000000002691698099555840415078E-1,
+0.156250000000002691698099555840415649E-1,
1595+0.781249999999989766148737734007061361E-2,
+0.781249999999989766148737734007058653E-2,
1596+0.390625000000002310324757362451072950E-2,
+0.390625000000002310324757362451074380E-2,
1597+0.195312499999999767310055151845923676E-2,
+0.195312499999999767310055151845923318E-2
1599-0.330908113531804644550698914860698518E-32,
+0.737655648425543017921748959548643300E-33,
1600+0.646304339719146005950884128119047103E-35,
-0.199728685471399985252652738182225539E-34,
1601+0.612273361057752245328214721921763582E-37,
-0.491287832226650747595597082681272950E-37,
1602+0.380437118781080261768012420837796041E-39,
-0.701672705528289773730040710639353438E-39,
1603+0.223655993021642834626120514802966177E-41,
-0.822711086520502132446014911659405323E-41,
1604-0.173323103806175811459878802833171501E-42,
+0.819759601630017986490381806224600937E-43,
1605+0.516728808719776294903125283838156573E-44,
+0.182168800362226219220084845827689097E-43,
1606-0.192678538844662347252012817702363468E-44,
+0.262743462060903200798199296866859275E-45,
1607-0.437905770101505334663665494778098791E-45,
-0.175162308040602133865466197911239516E-45,
1608-0.218952885050752667331832747389049396E-45,
-0.350324616081204267730932395822479033E-45
1612+0.0000000000000000,
+0.90949470177292824E-12,
1613-0.46520653995685279E-9,
-0.46520653995685279E-9,
1614+0.15848036127863449E-6,
+0.0000000000000000,
1615-0.11546426321729090E-4,
+0.11546426321729090E-4,
1616+0.0000000000000000,
-0.78207794285845011E-3,
1617+0.12715073651634160E-1,
+0.12715073651634160E-1,
1618-0.20021195337176320,
+0.0000000000000000,
1619+0.75670659542083740,
-0.75670659542083740,
1620+0.0000000000000000,
+2.6588592529296879,
1621-1.9980468750000000,
-1.9980468750000000,
1622+1.0000000000000000,
+0.0000000000000000
1624[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1630+0.99999999999999845,
+0.99999999999999911,
1631+0.50000000000000133,
+0.50000000000000067,
1632+0.25000000000000017,
+0.25000000000000028,
1633+0.12499999999999911,
+0.12499999999999924,
1634+0.62500000000001193E-1,
+0.62500000000001124E-1,
1635+0.31249999999999212E-1,
+0.31249999999999153E-1,
1636+0.15625000000000406E-1,
+0.15625000000000503E-1,
1637+0.78124999999998820E-2,
+0.78124999999998473E-2,
1638+0.39062500000000139E-2,
+0.39062500000000173E-2,
1639+0.19531249999999998E-2,
+0.19531250000000004E-2
1641-0.30312292689246898E-14,
-0.39170764430220062E-14,
1642-0.68538197226804901E-17,
+0.80868759391036751E-17,
1643-0.17941598983115063E-19,
+0.37617071523821058E-19,
1644-0.96831376073107395E-22,
+0.76998478904539376E-22,
1645+0.18929632499428235E-23,
+0.45584800724739300E-23,
1646+0.76689901761965884E-25,
+0.68298946085311025E-24,
1647-0.20598735957131060E-25,
+0.72903369416905027E-25,
1648-0.16155871338926322E-26,
+0.24233807008389483E-26,
1649+0.0000000000000000,
-0.80779356694631609E-27,
1650+0.0000000000000000,
-0.20194839173657902E-27
1654+0.00000000000000000000000000000000000,
+0.909494701772928199999999999999999977E-12,
1655-0.465206539956852800000000000000000002E-9,
-0.465206539956852800000000000000000002E-9,
1656+0.158480361278634500000000000000000004E-6,
+0.00000000000000000000000000000000000,
1657-0.115464263217290900000000000000000001E-4,
+0.115464263217290900000000000000000001E-4,
1658+0.00000000000000000000000000000000000,
-0.782077942858450099999999999999999970E-3,
1659+0.127150736516341599999999999999999998E-1,
+0.127150736516341599999999999999999998E-1,
1660-0.200211953371763200000000000000000000,
+0.00000000000000000000000000000000000,
1661+0.756706595420837399999999999999999953,
-0.756706595420837399999999999999999953,
1662+0.00000000000000000000000000000000000,
+2.65885925292968799999999999999999995,
1663-1.99804687500000000000000000000000000,
-1.99804687500000000000000000000000000,
1664+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1666[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1672+0.999999999999999160184470589450448173,
+0.999999999999999160184470589450448944,
1673+0.500000000000001492398035863052857764,
+0.500000000000001492398035863052858149,
1674+0.249999999999999617367224612848345132,
+0.249999999999999617367224612848344434,
1675+0.124999999999999149032692721659057207,
+0.124999999999999149032692721659057592,
1676+0.625000000000009555071172310128834721E-1,
+0.625000000000009555071172310128834842E-1,
1677+0.312499999999994379028135239093267093E-1,
+0.312499999999994379028135239093266431E-1,
1678+0.156250000000002691698099555840415078E-1,
+0.156250000000002691698099555840415649E-1,
1679+0.781249999999989766148737734007061361E-2,
+0.781249999999989766148737734007058653E-2,
1680+0.390625000000002310324757362451072950E-2,
+0.390625000000002310324757362451074380E-2,
1681+0.195312499999999767310055151845923676E-2,
+0.195312499999999767310055151845923318E-2
1683-0.330908113531804644550698914860698518E-32,
+0.737655648425543017921748959548643300E-33,
1684+0.646304339719146005950884128119047103E-35,
-0.199728685471399985252652738182225539E-34,
1685+0.612273361057752245328214721921763582E-37,
-0.491287832226650747595597082681272950E-37,
1686+0.380437118781080261768012420837796041E-39,
-0.701672705528289773730040710639353438E-39,
1687+0.223655993021642834626120514802966177E-41,
-0.822711086520502132446014911659405323E-41,
1688-0.173323103806175811459878802833171501E-42,
+0.819759601630017986490381806224600937E-43,
1689+0.516728808719776294903125283838156573E-44,
+0.182168800362226219220084845827689097E-43,
1690-0.192678538844662347252012817702363468E-44,
+0.262743462060903200798199296866859275E-45,
1691-0.437905770101505334663665494778098791E-45,
-0.175162308040602133865466197911239516E-45,
1692-0.218952885050752667331832747389049396E-45,
-0.350324616081204267730932395822479033E-45
1696+0.0000000000000000,
+0.90949470177292824E-12,
1697-0.46520653995685279E-9,
-0.46520653995685279E-9,
1698+0.15848036127863449E-6,
+0.0000000000000000,
1699-0.11546426321729090E-4,
+0.11546426321729090E-4,
1700+0.0000000000000000,
-0.78207794285845011E-3,
1701+0.12715073651634160E-1,
+0.12715073651634160E-1,
1702-0.20021195337176320,
+0.0000000000000000,
1703+0.75670659542083740,
-0.75670659542083740,
1704+0.0000000000000000,
+2.6588592529296879,
1705-1.9980468750000000,
-1.9980468750000000,
1706+1.0000000000000000,
+0.0000000000000000
1708[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1714+0.99999999999999845,
+0.99999999999999911,
1715+0.50000000000000133,
+0.50000000000000067,
1716+0.25000000000000017,
+0.25000000000000028,
1717+0.12499999999999911,
+0.12499999999999924,
1718+0.62500000000001193E-1,
+0.62500000000001124E-1,
1719+0.31249999999999212E-1,
+0.31249999999999153E-1,
1720+0.15625000000000406E-1,
+0.15625000000000503E-1,
1721+0.78124999999998820E-2,
+0.78124999999998473E-2,
1722+0.39062500000000139E-2,
+0.39062500000000173E-2,
1723+0.19531249999999998E-2,
+0.19531250000000004E-2
1725-0.30312292689246898E-14,
-0.39170764430220062E-14,
1726-0.68538197226804901E-17,
+0.80868759391036751E-17,
1727-0.17941598983115063E-19,
+0.37617071523821058E-19,
1728-0.96831376073107395E-22,
+0.76998478904539376E-22,
1729+0.18929632499428235E-23,
+0.45584800724739300E-23,
1730+0.76689901761965884E-25,
+0.68298946085311025E-24,
1731-0.20598735957131060E-25,
+0.72903369416905027E-25,
1732-0.16155871338926322E-26,
+0.24233807008389483E-26,
1733+0.0000000000000000,
-0.80779356694631609E-27,
1734+0.0000000000000000,
-0.20194839173657902E-27
1738+0.00000000000000000000000000000000000,
+0.909494701772928199999999999999999977E-12,
1739-0.465206539956852800000000000000000002E-9,
-0.465206539956852800000000000000000002E-9,
1740+0.158480361278634500000000000000000004E-6,
+0.00000000000000000000000000000000000,
1741-0.115464263217290900000000000000000001E-4,
+0.115464263217290900000000000000000001E-4,
1742+0.00000000000000000000000000000000000,
-0.782077942858450099999999999999999970E-3,
1743+0.127150736516341599999999999999999998E-1,
+0.127150736516341599999999999999999998E-1,
1744-0.200211953371763200000000000000000000,
+0.00000000000000000000000000000000000,
1745+0.756706595420837399999999999999999953,
-0.756706595420837399999999999999999953,
1746+0.00000000000000000000000000000000000,
+2.65885925292968799999999999999999995,
1747-1.99804687500000000000000000000000000,
-1.99804687500000000000000000000000000,
1748+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1750[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1756+0.999999999999999160184470589450448173,
+0.999999999999999160184470589450448944,
1757+0.500000000000001492398035863052857764,
+0.500000000000001492398035863052858149,
1758+0.249999999999999617367224612848345132,
+0.249999999999999617367224612848344434,
1759+0.124999999999999149032692721659057207,
+0.124999999999999149032692721659057592,
1760+0.625000000000009555071172310128834721E-1,
+0.625000000000009555071172310128834842E-1,
1761+0.312499999999994379028135239093267093E-1,
+0.312499999999994379028135239093266431E-1,
1762+0.156250000000002691698099555840415078E-1,
+0.156250000000002691698099555840415649E-1,
1763+0.781249999999989766148737734007061361E-2,
+0.781249999999989766148737734007058653E-2,
1764+0.390625000000002310324757362451072950E-2,
+0.390625000000002310324757362451074380E-2,
1765+0.195312499999999767310055151845923676E-2,
+0.195312499999999767310055151845923318E-2
1767-0.330908113531804644550698914860698518E-32,
+0.737655648425543017921748959548643300E-33,
1768+0.646304339719146005950884128119047103E-35,
-0.199728685471399985252652738182225539E-34,
1769+0.612273361057752245328214721921763582E-37,
-0.491287832226650747595597082681272950E-37,
1770+0.380437118781080261768012420837796041E-39,
-0.701672705528289773730040710639353438E-39,
1771+0.223655993021642834626120514802966177E-41,
-0.822711086520502132446014911659405323E-41,
1772-0.173323103806175811459878802833171501E-42,
+0.819759601630017986490381806224600937E-43,
1773+0.516728808719776294903125283838156573E-44,
+0.182168800362226219220084845827689097E-43,
1774-0.192678538844662347252012817702363468E-44,
+0.262743462060903200798199296866859275E-45,
1775-0.437905770101505334663665494778098791E-45,
-0.175162308040602133865466197911239516E-45,
1776-0.218952885050752667331832747389049396E-45,
-0.350324616081204267730932395822479033E-45
1780+0.0000000000000000,
+0.90949470177292824E-12,
1781-0.46520653995685279E-9,
-0.46520653995685279E-9,
1782+0.15848036127863449E-6,
+0.0000000000000000,
1783-0.11546426321729090E-4,
+0.11546426321729090E-4,
1784+0.0000000000000000,
-0.78207794285845011E-3,
1785+0.12715073651634160E-1,
+0.12715073651634160E-1,
1786-0.20021195337176320,
+0.0000000000000000,
1787+0.75670659542083740,
-0.75670659542083740,
1788+0.0000000000000000,
+2.6588592529296879,
1789-1.9980468750000000,
-1.9980468750000000,
1790+1.0000000000000000,
+0.0000000000000000
1792[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1798+0.99999999999999845,
+0.99999999999999911,
1799+0.50000000000000133,
+0.50000000000000067,
1800+0.25000000000000017,
+0.25000000000000028,
1801+0.12499999999999911,
+0.12499999999999924,
1802+0.62500000000001193E-1,
+0.62500000000001124E-1,
1803+0.31249999999999212E-1,
+0.31249999999999153E-1,
1804+0.15625000000000406E-1,
+0.15625000000000503E-1,
1805+0.78124999999998820E-2,
+0.78124999999998473E-2,
1806+0.39062500000000139E-2,
+0.39062500000000173E-2,
1807+0.19531249999999998E-2,
+0.19531250000000004E-2
1809-0.30312292689246898E-14,
-0.39170764430220062E-14,
1810-0.68538197226804901E-17,
+0.80868759391036751E-17,
1811-0.17941598983115063E-19,
+0.37617071523821058E-19,
1812-0.96831376073107395E-22,
+0.76998478904539376E-22,
1813+0.18929632499428235E-23,
+0.45584800724739300E-23,
1814+0.76689901761965884E-25,
+0.68298946085311025E-24,
1815-0.20598735957131060E-25,
+0.72903369416905027E-25,
1816-0.16155871338926322E-26,
+0.24233807008389483E-26,
1817+0.0000000000000000,
-0.80779356694631609E-27,
1818+0.0000000000000000,
-0.20194839173657902E-27
1822+0.00000000000000000000000000000000000,
+0.909494701772928199999999999999999977E-12,
1823-0.465206539956852800000000000000000002E-9,
-0.465206539956852800000000000000000002E-9,
1824+0.158480361278634500000000000000000004E-6,
+0.00000000000000000000000000000000000,
1825-0.115464263217290900000000000000000001E-4,
+0.115464263217290900000000000000000001E-4,
1826+0.00000000000000000000000000000000000,
-0.782077942858450099999999999999999970E-3,
1827+0.127150736516341599999999999999999998E-1,
+0.127150736516341599999999999999999998E-1,
1828-0.200211953371763200000000000000000000,
+0.00000000000000000000000000000000000,
1829+0.756706595420837399999999999999999953,
-0.756706595420837399999999999999999953,
1830+0.00000000000000000000000000000000000,
+2.65885925292968799999999999999999995,
1831-1.99804687500000000000000000000000000,
-1.99804687500000000000000000000000000,
1832+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1834[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1840+0.999999999999999160184470589450448173,
+0.999999999999999160184470589450448944,
1841+0.500000000000001492398035863052857764,
+0.500000000000001492398035863052858149,
1842+0.249999999999999617367224612848345132,
+0.249999999999999617367224612848344434,
1843+0.124999999999999149032692721659057207,
+0.124999999999999149032692721659057592,
1844+0.625000000000009555071172310128834721E-1,
+0.625000000000009555071172310128834842E-1,
1845+0.312499999999994379028135239093267093E-1,
+0.312499999999994379028135239093266431E-1,
1846+0.156250000000002691698099555840415078E-1,
+0.156250000000002691698099555840415649E-1,
1847+0.781249999999989766148737734007061361E-2,
+0.781249999999989766148737734007058653E-2,
1848+0.390625000000002310324757362451072950E-2,
+0.390625000000002310324757362451074380E-2,
1849+0.195312499999999767310055151845923676E-2,
+0.195312499999999767310055151845923318E-2
1851-0.330908113531804644550698914860698518E-32,
+0.737655648425543017921748959548643300E-33,
1852+0.646304339719146005950884128119047103E-35,
-0.199728685471399985252652738182225539E-34,
1853+0.612273361057752245328214721921763582E-37,
-0.491287832226650747595597082681272950E-37,
1854+0.380437118781080261768012420837796041E-39,
-0.701672705528289773730040710639353438E-39,
1855+0.223655993021642834626120514802966177E-41,
-0.822711086520502132446014911659405323E-41,
1856-0.173323103806175811459878802833171501E-42,
+0.819759601630017986490381806224600937E-43,
1857+0.516728808719776294903125283838156573E-44,
+0.182168800362226219220084845827689097E-43,
1858-0.192678538844662347252012817702363468E-44,
+0.262743462060903200798199296866859275E-45,
1859-0.437905770101505334663665494778098791E-45,
-0.175162308040602133865466197911239516E-45,
1860-0.218952885050752667331832747389049396E-45,
-0.350324616081204267730932395822479033E-45
1869+288.000000,
+0.00000000,
1870-1344.00000,
+504.000000,
1871+2204.00000,
-2352.00000,
1872-920.000000,
+4334.00000,
1873-1587.00000,
-3836.00000,
1874+2374.00000,
+1394.00000,
1875-1293.00000,
+200.000000,
1876+284.000000,
-334.000000,
1877+3.00000000,
+100.000000,
1878-10.0000000,
-10.0000000,
1879+1.00000000,
+0.00000000
1881[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1887-0.262260437E-5,
+4.00000191,
1888+2.99939489,
+0.243153726E-2,
1889+3.00061989,
-0.242062425E-2,
1890+0.158268567E-1,
+2.02321959,
1891+0.118745584E-1,
+1.97478998,
1892-0.277059320E-1,
+2.00198984,
1893+1.02006865,
+0.411952510E-1,
1894+1.04016447,
-0.220653433E-1,
1895+0.960722089,
+0.191663913E-1,
1896+0.979039192,
-0.383066721E-1
1898+0.239379883,
-0.129583254,
1899+0.220031738E-1,
+0.146927238E-1,
1900-0.135498047E-1,
+0.105561465E-1,
1901-0.311279297E-2,
+0.171809196E-1,
1902-0.695800781E-2,
+0.117588043E-1,
1903-0.726318359E-2,
+0.152904987E-1,
1904+0.823974609E-3,
+0.151634216E-3,
1905+0.732421875E-3,
-0.166893005E-3,
1906+0.823974609E-3,
-0.217437744E-3,
1907+0.457763672E-3,
-0.325202942E-3
1911+288.00000000000000,
+0.0000000000000000,
1912-1344.0000000000000,
+504.00000000000000,
1913+2204.0000000000000,
-2352.0000000000000,
1914-920.00000000000000,
+4334.0000000000000,
1915-1587.0000000000000,
-3836.0000000000000,
1916+2374.0000000000000,
+1394.0000000000000,
1917-1293.0000000000000,
+200.00000000000000,
1918+284.00000000000000,
-334.00000000000000,
1919+3.0000000000000000,
+100.00000000000000,
1920-10.000000000000000,
-10.000000000000000,
1921+1.0000000000000000,
+0.0000000000000000
1923[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1929-0.26645352591003757E-13,
+3.9999999999999880,
1930+3.0000001970524699,
-0.23536775645374987E-6,
1931+2.9999998029474919,
+0.23536782983636444E-6,
1932+0.10185201113391936E-4,
+1.9999738276389909,
1933+0.17573524658964788E-4,
+2.0000219075497694,
1934-0.27758725751883115E-4,
+2.0000042648112437,
1935+0.99972283047521127,
+0.13862002582648678E-4,
1936+1.0000137952404726,
+0.27729146568424598E-3,
1937+0.99998601603900350,
-0.27723617160111893E-3,
1938+1.0002773582453568,
-0.13917296733077833E-4
1940+0.33077185435104184E-9,
+0.20417161294972133E-8,
1941-0.56900262279668823E-10,
+0.24780200131034645E-9,
1942-0.16075318853836507E-9,
+0.27178263366041855E-9,
1943+0.40927261579781771E-11,
+0.18487610964693091E-10,
1944-0.34674485505092889E-11,
+0.80048992608106051E-11,
1945-0.26147972675971687E-11,
+0.25204519894794775E-10,
1946+0.22737367544323206E-12,
+0.10120151244796816E-11,
1947+0.11368683772161603E-12,
+0.10641210135275969E-11,
1948+0.56843418860808015E-13,
+0.13136297605242930E-11,
1949+0.0000000000000000,
+0.14300774106579262E-11
1953+288.000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
1954-1344.00000000000000000000000000000000,
+504.000000000000000000000000000000000,
1955+2204.00000000000000000000000000000000,
-2352.00000000000000000000000000000000,
1956-920.000000000000000000000000000000000,
+4334.00000000000000000000000000000000,
1957-1587.00000000000000000000000000000000,
-3836.00000000000000000000000000000000,
1958+2374.00000000000000000000000000000000,
+1394.00000000000000000000000000000000,
1959-1293.00000000000000000000000000000000,
+200.000000000000000000000000000000000,
1960+284.000000000000000000000000000000000,
-334.000000000000000000000000000000000,
1961+3.00000000000000000000000000000000000,
+100.000000000000000000000000000000000,
1962-10.0000000000000000000000000000000000,
-10.0000000000000000000000000000000000,
1963+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
1965[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
1971-0.130963236218332038007806500095775058E-31,
+4.00000000000000000000000000000001233,
1972+3.00000000000000017551097726216032856,
-0.110201355633942977982250385201797701E-15,
1973+2.99999999999999982448902273783963986,
+0.110201355633943002360704498217562890E-15,
1974+0.198827846113882935119497667613680559E-10,
+2.00000000001021969660975542649721576,
1975-0.109087542230478321562619250537222123E-11,
+1.99999999997767115512427343820588314,
1976-0.187919091890835102963115145452168761E-10,
+2.00000000001210914826597113529687375,
1977+0.999999998924471798982144453844539050,
+0.569327565931999073274615515126895450E-8,
1978+1.00000000569327572067379369961664497,
+0.107552815246768798396814854480103414E-8,
1979+0.999999994306724389230175509482966430,
-0.107552813966405382053522281260010247E-8,
1980+1.00000000107552809111388633705588402,
-0.569327567212362489617908738729673540E-8
1982+0.119226465062840671740415126035427104E-26,
-0.104092661634241323385969495840791379E-28,
1983-0.109996792471754833617097901821618505E-27,
+0.130434128372842219928401259706545043E-28,
1984-0.143769899976529401536287531022787790E-27,
+0.135376768311312987970879984352679944E-27,
1985+0.833234331139693719466138297079942955E-29,
+0.739591563885907217517079181128459199E-29,
1986+0.493038065763132378382330353301741394E-29,
+0.103976104123069846169611920461958392E-28,
1987+0.576854536942864882707326513363037430E-29,
+0.541027064395165263276723173580121787E-29,
1988-0.345126646034192664867631247311218975E-30,
+0.283326920330550838279326406730858078E-30,
1989-0.295822839457879427029398211981044836E-30,
+0.781981766077889895393086715455354831E-32,
1990+0.147911419728939713514699105990522418E-30,
-0.297212059298750093875342660053652258E-30,
1991-0.542341872339445616220563388631915533E-30,
+0.206541271182968673360478096961938272E-30
1995+288.000000,
+0.00000000,
1996-1344.00000,
+504.000000,
1997+2204.00000,
-2352.00000,
1998-920.000000,
+4334.00000,
1999-1587.00000,
-3836.00000,
2000+2374.00000,
+1394.00000,
2001-1293.00000,
+200.000000,
2002+284.000000,
-334.000000,
2003+3.00000000,
+100.000000,
2004-10.0000000,
-10.0000000,
2005+1.00000000,
+0.00000000
2007[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2013-0.262260437E-5,
+4.00000191,
2014+2.99939489,
+0.243153726E-2,
2015+3.00061989,
-0.242062425E-2,
2016+0.158268567E-1,
+2.02321959,
2017+0.118745584E-1,
+1.97478998,
2018-0.277059320E-1,
+2.00198984,
2019+1.02006865,
+0.411952510E-1,
2020+1.04016447,
-0.220653433E-1,
2021+0.960722089,
+0.191663913E-1,
2022+0.979039192,
-0.383066721E-1
2024+0.239379883,
-0.129583254,
2025+0.220031738E-1,
+0.146927238E-1,
2026-0.135498047E-1,
+0.105561465E-1,
2027-0.311279297E-2,
+0.171809196E-1,
2028-0.695800781E-2,
+0.117588043E-1,
2029-0.726318359E-2,
+0.152904987E-1,
2030+0.823974609E-3,
+0.151634216E-3,
2031+0.732421875E-3,
-0.166893005E-3,
2032+0.823974609E-3,
-0.217437744E-3,
2033+0.457763672E-3,
-0.325202942E-3
2037+288.00000000000000,
+0.0000000000000000,
2038-1344.0000000000000,
+504.00000000000000,
2039+2204.0000000000000,
-2352.0000000000000,
2040-920.00000000000000,
+4334.0000000000000,
2041-1587.0000000000000,
-3836.0000000000000,
2042+2374.0000000000000,
+1394.0000000000000,
2043-1293.0000000000000,
+200.00000000000000,
2044+284.00000000000000,
-334.00000000000000,
2045+3.0000000000000000,
+100.00000000000000,
2046-10.000000000000000,
-10.000000000000000,
2047+1.0000000000000000,
+0.0000000000000000
2049[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2055-0.26645352591003757E-13,
+3.9999999999999880,
2056+3.0000001970524699,
-0.23536775645374987E-6,
2057+2.9999998029474919,
+0.23536782983636444E-6,
2058+0.10185201113391936E-4,
+1.9999738276389909,
2059+0.17573524658964788E-4,
+2.0000219075497694,
2060-0.27758725751883115E-4,
+2.0000042648112437,
2061+0.99972283047521127,
+0.13862002582648678E-4,
2062+1.0000137952404726,
+0.27729146568424598E-3,
2063+0.99998601603900350,
-0.27723617160111893E-3,
2064+1.0002773582453568,
-0.13917296733077833E-4
2066+0.33077185435104184E-9,
+0.20417161294972133E-8,
2067-0.56900262279668823E-10,
+0.24780200131034645E-9,
2068-0.16075318853836507E-9,
+0.27178263366041855E-9,
2069+0.40927261579781771E-11,
+0.18487610964693091E-10,
2070-0.34674485505092889E-11,
+0.80048992608106051E-11,
2071-0.26147972675971687E-11,
+0.25204519894794775E-10,
2072+0.22737367544323206E-12,
+0.10120151244796816E-11,
2073+0.11368683772161603E-12,
+0.10641210135275969E-11,
2074+0.56843418860808015E-13,
+0.13136297605242930E-11,
2075+0.0000000000000000,
+0.14300774106579262E-11
2079+288.000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2080-1344.00000000000000000000000000000000,
+504.000000000000000000000000000000000,
2081+2204.00000000000000000000000000000000,
-2352.00000000000000000000000000000000,
2082-920.000000000000000000000000000000000,
+4334.00000000000000000000000000000000,
2083-1587.00000000000000000000000000000000,
-3836.00000000000000000000000000000000,
2084+2374.00000000000000000000000000000000,
+1394.00000000000000000000000000000000,
2085-1293.00000000000000000000000000000000,
+200.000000000000000000000000000000000,
2086+284.000000000000000000000000000000000,
-334.000000000000000000000000000000000,
2087+3.00000000000000000000000000000000000,
+100.000000000000000000000000000000000,
2088-10.0000000000000000000000000000000000,
-10.0000000000000000000000000000000000,
2089+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
2091[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2097-0.130963236218332038007806500095775058E-31,
+4.00000000000000000000000000000001233,
2098+3.00000000000000017551097726216032856,
-0.110201355633942977982250385201797701E-15,
2099+2.99999999999999982448902273783963986,
+0.110201355633943002360704498217562890E-15,
2100+0.198827846113882935119497667613680559E-10,
+2.00000000001021969660975542649721576,
2101-0.109087542230478321562619250537222123E-11,
+1.99999999997767115512427343820588314,
2102-0.187919091890835102963115145452168761E-10,
+2.00000000001210914826597113529687375,
2103+0.999999998924471798982144453844539050,
+0.569327565931999073274615515126895450E-8,
2104+1.00000000569327572067379369961664497,
+0.107552815246768798396814854480103414E-8,
2105+0.999999994306724389230175509482966430,
-0.107552813966405382053522281260010247E-8,
2106+1.00000000107552809111388633705588402,
-0.569327567212362489617908738729673540E-8
2108+0.119226465062840671740415126035427104E-26,
-0.104092661634241323385969495840791379E-28,
2109-0.109996792471754833617097901821618505E-27,
+0.130434128372842219928401259706545043E-28,
2110-0.143769899976529401536287531022787790E-27,
+0.135376768311312987970879984352679944E-27,
2111+0.833234331139693719466138297079942955E-29,
+0.739591563885907217517079181128459199E-29,
2112+0.493038065763132378382330353301741394E-29,
+0.103976104123069846169611920461958392E-28,
2113+0.576854536942864882707326513363037430E-29,
+0.541027064395165263276723173580121787E-29,
2114-0.345126646034192664867631247311218975E-30,
+0.283326920330550838279326406730858078E-30,
2115-0.295822839457879427029398211981044836E-30,
+0.781981766077889895393086715455354831E-32,
2116+0.147911419728939713514699105990522418E-30,
-0.297212059298750093875342660053652258E-30,
2117-0.542341872339445616220563388631915533E-30,
+0.206541271182968673360478096961938272E-30
2121+288.000000,
+0.00000000,
2122-1344.00000,
+504.000000,
2123+2204.00000,
-2352.00000,
2124-920.000000,
+4334.00000,
2125-1587.00000,
-3836.00000,
2126+2374.00000,
+1394.00000,
2127-1293.00000,
+200.000000,
2128+284.000000,
-334.000000,
2129+3.00000000,
+100.000000,
2130-10.0000000,
-10.0000000,
2131+1.00000000,
+0.00000000
2133[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2139-0.262260437E-5,
+4.00000191,
2140+2.99939489,
+0.243153726E-2,
2141+3.00061989,
-0.242062425E-2,
2142+0.158268567E-1,
+2.02321959,
2143+0.118745584E-1,
+1.97478998,
2144-0.277059320E-1,
+2.00198984,
2145+1.02006865,
+0.411952510E-1,
2146+1.04016447,
-0.220653433E-1,
2147+0.960722089,
+0.191663913E-1,
2148+0.979039192,
-0.383066721E-1
2150+0.239379883,
-0.129583254,
2151+0.220031738E-1,
+0.146927238E-1,
2152-0.135498047E-1,
+0.105561465E-1,
2153-0.311279297E-2,
+0.171809196E-1,
2154-0.695800781E-2,
+0.117588043E-1,
2155-0.726318359E-2,
+0.152904987E-1,
2156+0.823974609E-3,
+0.151634216E-3,
2157+0.732421875E-3,
-0.166893005E-3,
2158+0.823974609E-3,
-0.217437744E-3,
2159+0.457763672E-3,
-0.325202942E-3
2163+288.00000000000000,
+0.0000000000000000,
2164-1344.0000000000000,
+504.00000000000000,
2165+2204.0000000000000,
-2352.0000000000000,
2166-920.00000000000000,
+4334.0000000000000,
2167-1587.0000000000000,
-3836.0000000000000,
2168+2374.0000000000000,
+1394.0000000000000,
2169-1293.0000000000000,
+200.00000000000000,
2170+284.00000000000000,
-334.00000000000000,
2171+3.0000000000000000,
+100.00000000000000,
2172-10.000000000000000,
-10.000000000000000,
2173+1.0000000000000000,
+0.0000000000000000
2175[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2181-0.26645352591003757E-13,
+3.9999999999999880,
2182+3.0000001970524699,
-0.23536775645374987E-6,
2183+2.9999998029474919,
+0.23536782983636444E-6,
2184+0.10185201113391936E-4,
+1.9999738276389909,
2185+0.17573524658964788E-4,
+2.0000219075497694,
2186-0.27758725751883115E-4,
+2.0000042648112437,
2187+0.99972283047521127,
+0.13862002582648678E-4,
2188+1.0000137952404726,
+0.27729146568424598E-3,
2189+0.99998601603900350,
-0.27723617160111893E-3,
2190+1.0002773582453568,
-0.13917296733077833E-4
2192+0.33077185435104184E-9,
+0.20417161294972133E-8,
2193-0.56900262279668823E-10,
+0.24780200131034645E-9,
2194-0.16075318853836507E-9,
+0.27178263366041855E-9,
2195+0.40927261579781771E-11,
+0.18487610964693091E-10,
2196-0.34674485505092889E-11,
+0.80048992608106051E-11,
2197-0.26147972675971687E-11,
+0.25204519894794775E-10,
2198+0.22737367544323206E-12,
+0.10120151244796816E-11,
2199+0.11368683772161603E-12,
+0.10641210135275969E-11,
2200+0.56843418860808015E-13,
+0.13136297605242930E-11,
2201+0.0000000000000000,
+0.14300774106579262E-11
2205+288.000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2206-1344.00000000000000000000000000000000,
+504.000000000000000000000000000000000,
2207+2204.00000000000000000000000000000000,
-2352.00000000000000000000000000000000,
2208-920.000000000000000000000000000000000,
+4334.00000000000000000000000000000000,
2209-1587.00000000000000000000000000000000,
-3836.00000000000000000000000000000000,
2210+2374.00000000000000000000000000000000,
+1394.00000000000000000000000000000000,
2211-1293.00000000000000000000000000000000,
+200.000000000000000000000000000000000,
2212+284.000000000000000000000000000000000,
-334.000000000000000000000000000000000,
2213+3.00000000000000000000000000000000000,
+100.000000000000000000000000000000000,
2214-10.0000000000000000000000000000000000,
-10.0000000000000000000000000000000000,
2215+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
2217[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2223-0.130963236218332038007806500095775058E-31,
+4.00000000000000000000000000000001233,
2224+3.00000000000000017551097726216032856,
-0.110201355633942977982250385201797701E-15,
2225+2.99999999999999982448902273783963986,
+0.110201355633943002360704498217562890E-15,
2226+0.198827846113882935119497667613680559E-10,
+2.00000000001021969660975542649721576,
2227-0.109087542230478321562619250537222123E-11,
+1.99999999997767115512427343820588314,
2228-0.187919091890835102963115145452168761E-10,
+2.00000000001210914826597113529687375,
2229+0.999999998924471798982144453844539050,
+0.569327565931999073274615515126895450E-8,
2230+1.00000000569327572067379369961664497,
+0.107552815246768798396814854480103414E-8,
2231+0.999999994306724389230175509482966430,
-0.107552813966405382053522281260010247E-8,
2232+1.00000000107552809111388633705588402,
-0.569327567212362489617908738729673540E-8
2234+0.119226465062840671740415126035427104E-26,
-0.104092661634241323385969495840791379E-28,
2235-0.109996792471754833617097901821618505E-27,
+0.130434128372842219928401259706545043E-28,
2236-0.143769899976529401536287531022787790E-27,
+0.135376768311312987970879984352679944E-27,
2237+0.833234331139693719466138297079942955E-29,
+0.739591563885907217517079181128459199E-29,
2238+0.493038065763132378382330353301741394E-29,
+0.103976104123069846169611920461958392E-28,
2239+0.576854536942864882707326513363037430E-29,
+0.541027064395165263276723173580121787E-29,
2240-0.345126646034192664867631247311218975E-30,
+0.283326920330550838279326406730858078E-30,
2241-0.295822839457879427029398211981044836E-30,
+0.781981766077889895393086715455354831E-32,
2242+0.147911419728939713514699105990522418E-30,
-0.297212059298750093875342660053652258E-30,
2243-0.542341872339445616220563388631915533E-30,
+0.206541271182968673360478096961938272E-30
2247+288.000000,
+0.00000000,
2248-1344.00000,
+504.000000,
2249+2204.00000,
-2352.00000,
2250-920.000000,
+4334.00000,
2251-1587.00000,
-3836.00000,
2252+2374.00000,
+1394.00000,
2253-1293.00000,
+200.000000,
2254+284.000000,
-334.000000,
2255+3.00000000,
+100.000000,
2256-10.0000000,
-10.0000000,
2257+1.00000000,
+0.00000000
2259[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2265-0.262260437E-5,
+4.00000191,
2266+2.99939489,
+0.243153726E-2,
2267+3.00061989,
-0.242062425E-2,
2268+0.158268567E-1,
+2.02321959,
2269+0.118745584E-1,
+1.97478998,
2270-0.277059320E-1,
+2.00198984,
2271+1.02006865,
+0.411952510E-1,
2272+1.04016447,
-0.220653433E-1,
2273+0.960722089,
+0.191663913E-1,
2274+0.979039192,
-0.383066721E-1
2276+0.239379883,
-0.129583254,
2277+0.220031738E-1,
+0.146927238E-1,
2278-0.135498047E-1,
+0.105561465E-1,
2279-0.311279297E-2,
+0.171809196E-1,
2280-0.695800781E-2,
+0.117588043E-1,
2281-0.726318359E-2,
+0.152904987E-1,
2282+0.823974609E-3,
+0.151634216E-3,
2283+0.732421875E-3,
-0.166893005E-3,
2284+0.823974609E-3,
-0.217437744E-3,
2285+0.457763672E-3,
-0.325202942E-3
2289+288.00000000000000,
+0.0000000000000000,
2290-1344.0000000000000,
+504.00000000000000,
2291+2204.0000000000000,
-2352.0000000000000,
2292-920.00000000000000,
+4334.0000000000000,
2293-1587.0000000000000,
-3836.0000000000000,
2294+2374.0000000000000,
+1394.0000000000000,
2295-1293.0000000000000,
+200.00000000000000,
2296+284.00000000000000,
-334.00000000000000,
2297+3.0000000000000000,
+100.00000000000000,
2298-10.000000000000000,
-10.000000000000000,
2299+1.0000000000000000,
+0.0000000000000000
2301[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2307-0.26645352591003757E-13,
+3.9999999999999880,
2308+3.0000001970524699,
-0.23536775645374987E-6,
2309+2.9999998029474919,
+0.23536782983636444E-6,
2310+0.10185201113391936E-4,
+1.9999738276389909,
2311+0.17573524658964788E-4,
+2.0000219075497694,
2312-0.27758725751883115E-4,
+2.0000042648112437,
2313+0.99972283047521127,
+0.13862002582648678E-4,
2314+1.0000137952404726,
+0.27729146568424598E-3,
2315+0.99998601603900350,
-0.27723617160111893E-3,
2316+1.0002773582453568,
-0.13917296733077833E-4
2318+0.33077185435104184E-9,
+0.20417161294972133E-8,
2319-0.56900262279668823E-10,
+0.24780200131034645E-9,
2320-0.16075318853836507E-9,
+0.27178263366041855E-9,
2321+0.40927261579781771E-11,
+0.18487610964693091E-10,
2322-0.34674485505092889E-11,
+0.80048992608106051E-11,
2323-0.26147972675971687E-11,
+0.25204519894794775E-10,
2324+0.22737367544323206E-12,
+0.10120151244796816E-11,
2325+0.11368683772161603E-12,
+0.10641210135275969E-11,
2326+0.56843418860808015E-13,
+0.13136297605242930E-11,
2327+0.0000000000000000,
+0.14300774106579262E-11
2331+288.000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2332-1344.00000000000000000000000000000000,
+504.000000000000000000000000000000000,
2333+2204.00000000000000000000000000000000,
-2352.00000000000000000000000000000000,
2334-920.000000000000000000000000000000000,
+4334.00000000000000000000000000000000,
2335-1587.00000000000000000000000000000000,
-3836.00000000000000000000000000000000,
2336+2374.00000000000000000000000000000000,
+1394.00000000000000000000000000000000,
2337-1293.00000000000000000000000000000000,
+200.000000000000000000000000000000000,
2338+284.000000000000000000000000000000000,
-334.000000000000000000000000000000000,
2339+3.00000000000000000000000000000000000,
+100.000000000000000000000000000000000,
2340-10.0000000000000000000000000000000000,
-10.0000000000000000000000000000000000,
2341+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
2343[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2349-0.130963236218332038007806500095775058E-31,
+4.00000000000000000000000000000001233,
2350+3.00000000000000017551097726216032856,
-0.110201355633942977982250385201797701E-15,
2351+2.99999999999999982448902273783963986,
+0.110201355633943002360704498217562890E-15,
2352+0.198827846113882935119497667613680559E-10,
+2.00000000001021969660975542649721576,
2353-0.109087542230478321562619250537222123E-11,
+1.99999999997767115512427343820588314,
2354-0.187919091890835102963115145452168761E-10,
+2.00000000001210914826597113529687375,
2355+0.999999998924471798982144453844539050,
+0.569327565931999073274615515126895450E-8,
2356+1.00000000569327572067379369961664497,
+0.107552815246768798396814854480103414E-8,
2357+0.999999994306724389230175509482966430,
-0.107552813966405382053522281260010247E-8,
2358+1.00000000107552809111388633705588402,
-0.569327567212362489617908738729673540E-8
2360+0.119226465062840671740415126035427104E-26,
-0.104092661634241323385969495840791379E-28,
2361-0.109996792471754833617097901821618505E-27,
+0.130434128372842219928401259706545043E-28,
2362-0.143769899976529401536287531022787790E-27,
+0.135376768311312987970879984352679944E-27,
2363+0.833234331139693719466138297079942955E-29,
+0.739591563885907217517079181128459199E-29,
2364+0.493038065763132378382330353301741394E-29,
+0.103976104123069846169611920461958392E-28,
2365+0.576854536942864882707326513363037430E-29,
+0.541027064395165263276723173580121787E-29,
2366-0.345126646034192664867631247311218975E-30,
+0.283326920330550838279326406730858078E-30,
2367-0.295822839457879427029398211981044836E-30,
+0.781981766077889895393086715455354831E-32,
2368+0.147911419728939713514699105990522418E-30,
-0.297212059298750093875342660053652258E-30,
2369-0.542341872339445616220563388631915533E-30,
+0.206541271182968673360478096961938272E-30
2378+4095.00000,
+0.00000000,
2379+0.00000000,
+24576.0000,
2380-67584.0000,
+0.00000000,
2381+0.00000000,
-112640.000,
2382+126720.000,
+0.00000000,
2383+0.00000000,
+101376.000,
2384-59136.0000,
+0.00000000,
2385+0.00000000,
-25344.0000,
2386+7920.00000,
+0.00000000,
2387+0.00000000,
+1760.00000,
2388-264.000000,
+0.00000000,
2389+0.00000000,
-24.0000000,
2390+1.00000000,
+0.00000000
2392[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2398-0.102758408E-2,
+3.26374292,
2399+0.743275821,
+2.94730639,
2400-0.743724287,
+2.94551206,
2401+0.972983360,
+2.28771806,
2402-0.971354008,
+2.28610396,
2403+0.878654838,
+1.98345017,
2404+0.860098600,
+1.51398087,
2405-0.878169596,
+1.98575449,
2406-0.860523164,
+1.51400054,
2407+0.499328941,
+1.13599277,
2408-0.566091039E-4,
+1.00045466,
2409-0.499485791,
+1.13598478
2411+12.4841309,
+0.153654099,
2412-2.42480469,
-4.67864990,
2413-2.90429688,
+5.80480957,
2414-1.59033203,
-0.416015625,
2415-1.83007812,
+0.395629883,
2416-0.713867188,
-0.938720703E-1,
2417-0.152343750,
+0.140258789,
2418-0.572753906,
-0.150268555,
2419-0.998535156E-1,
-0.616455078E-1,
2420-0.258789062E-1,
-0.122070312E-2,
2421-0.170898438E-2,
-0.675007701E-3,
2422-0.190429688E-1,
-0.146484375E-1
2426+4095.0000000000000,
+0.0000000000000000,
2427+0.0000000000000000,
+24576.000000000000,
2428-67584.000000000000,
+0.0000000000000000,
2429+0.0000000000000000,
-112640.00000000000,
2430+126720.00000000000,
+0.0000000000000000,
2431+0.0000000000000000,
+101376.00000000000,
2432-59136.000000000000,
+0.0000000000000000,
2433+0.0000000000000000,
-25344.000000000000,
2434+7920.0000000000000,
+0.0000000000000000,
2435+0.0000000000000000,
+1760.0000000000000,
2436-264.00000000000000,
+0.0000000000000000,
2437+0.0000000000000000,
-24.000000000000000,
2438+1.0000000000000000,
+0.0000000000000000
2440[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2446-0.22127855103803995E-10,
+3.0000000012083348,
2447+0.50000000092178387,
+2.8660254036044090,
2448+0.86602540366466041,
+2.4999999995817723,
2449-0.50000000092225982,
+2.8660254035707347,
2450-0.86602540364973568,
+2.4999999995766795,
2451+0.99999999988689936,
+2.0000000000036473,
2452-0.99999999988111377,
+2.0000000000065561,
2453+0.86602540376976866,
+1.5000000000087796,
2454-0.86602540376847770,
+1.5000000000108240,
2455+0.49999999999651829,
+1.1339745962147472,
2456+0.18475302723801401E-12,
+0.99999999999813760,
2457-0.49999999999610956,
+1.1339745962153789
2459+0.14059878594707698E-7,
+0.26553426475682450E-9,
2460+0.46070454118307680E-8,
-0.11811152944574133E-7,
2461-0.32819116313476115E-8,
-0.20859260985162109E-8,
2462+0.47079993237275630E-8,
+0.13283624866744503E-7,
2463-0.23110260372050107E-8,
+0.18424088921165094E-8,
2464-0.16898411558941007E-8,
+0.26602720026858151E-10,
2465-0.92268237494863570E-9,
-0.49340087571181357E-10,
2466-0.29012880986556411E-9,
+0.29558577807620168E-10,
2467-0.10641088010743260E-9,
-0.33196556614711881E-10,
2468-0.22737367544323206E-11,
-0.93223206931725144E-11,
2469+0.19554136088117957E-10,
+0.22170363269036277E-11,
2470-0.90949470177292824E-12,
+0.60936145018786192E-10
2474+4095.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2475+0.00000000000000000000000000000000000,
+24576.0000000000000000000000000000000,
2476-67584.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2477+0.00000000000000000000000000000000000,
-112640.000000000000000000000000000000,
2478+126720.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2479+0.00000000000000000000000000000000000,
+101376.000000000000000000000000000000,
2480-59136.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2481+0.00000000000000000000000000000000000,
-25344.0000000000000000000000000000000,
2482+7920.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2483+0.00000000000000000000000000000000000,
+1760.00000000000000000000000000000000,
2484-264.000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2485+0.00000000000000000000000000000000000,
-24.0000000000000000000000000000000000,
2486+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
2488[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2494+0.866025403784438646763723170731842991,
+2.49999999999999999999999999930164047,
2495+0.500000000000000000000000001261300765,
+2.86602540378443864676372317070946253,
2496-0.347698086029325849838930767012779505E-28,
+3.00000000000000000000000000152269067,
2497-0.500000000000000000000000001265360529,
+2.86602540378443864676372317065155482,
2498-0.866025403784438646763723170698404803,
+2.49999999999999999999999999929392211,
2499+0.999999999999999999999999999757820376,
+1.99999999999999999999999999995932648,
2500-0.999999999999999999999999999750830695,
+1.99999999999999999999999999997135064,
2501+0.866025403784438646763723170716402811,
+1.50000000000000000000000000003897716,
2502-0.866025403784438646763723170717795451,
+1.50000000000000000000000000004211450,
2503+0.499999999999999999999999999996946149,
+1.13397459621556135323627682925377416,
2504+0.400031557749517858232708991895941675E-31,
+1.00000000000000000000000000000101670,
2505-0.499999999999999999999999999997192042,
+1.13397459621556135323627682925417245
2507-0.494852445845140705534777329001891802E-26,
-0.688083924579027547270380241067910289E-26,
2508+0.716877347619594478167908333700731986E-26,
-0.143695944266664931679530181469792529E-25,
2509+0.144759920412581771352079250372217687E-25,
+0.417237703235191019806716927084944130E-27,
2510+0.751863328766146351737918495571023556E-26,
+0.134045217167417378505074447134264243E-25,
2511-0.646037638330747618041935108538337783E-26,
+0.660592122032075285851781500567805189E-26,
2512-0.272866987115947983491916910731315757E-26,
-0.464639073175175953387508124951561089E-27,
2513-0.310732310566556550151679881864889496E-26,
+0.336054745624151029105396368810466934E-27,
2514-0.737190515929035532157260344256763732E-27,
+0.264268403249038954812929069369733387E-27,
2515-0.575474030358728112047855988373792555E-27,
-0.318305375256678263483632476091604244E-27,
2516-0.686308987542280270708203851796024020E-28,
-0.315544362088404722164691426113114492E-29,
2517-0.138050658413677065947052498924487590E-28,
+0.480037869299421429879250790270093257E-30,
2518-0.958465999843529343575250206818585269E-28,
-0.457539325028186847138802567864016013E-28
2522+4095.00000,
+0.00000000,
2523+0.00000000,
+24576.0000,
2524-67584.0000,
+0.00000000,
2525+0.00000000,
-112640.000,
2526+126720.000,
+0.00000000,
2527+0.00000000,
+101376.000,
2528-59136.0000,
+0.00000000,
2529+0.00000000,
-25344.0000,
2530+7920.00000,
+0.00000000,
2531+0.00000000,
+1760.00000,
2532-264.000000,
+0.00000000,
2533+0.00000000,
-24.0000000,
2534+1.00000000,
+0.00000000
2536[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2542-0.102758408E-2,
+3.26374292,
2543+0.743275821,
+2.94730639,
2544-0.743724287,
+2.94551206,
2545+0.972983360,
+2.28771806,
2546-0.971354008,
+2.28610396,
2547+0.878654838,
+1.98345017,
2548+0.860098600,
+1.51398087,
2549-0.878169596,
+1.98575449,
2550-0.860523164,
+1.51400054,
2551+0.499328941,
+1.13599277,
2552-0.566091039E-4,
+1.00045466,
2553-0.499485791,
+1.13598478
2555+12.4841309,
+0.153654099,
2556-2.42480469,
-4.67864990,
2557-2.90429688,
+5.80480957,
2558-1.59033203,
-0.416015625,
2559-1.83007812,
+0.395629883,
2560-0.713867188,
-0.938720703E-1,
2561-0.152343750,
+0.140258789,
2562-0.572753906,
-0.150268555,
2563-0.998535156E-1,
-0.616455078E-1,
2564-0.258789062E-1,
-0.122070312E-2,
2565-0.170898438E-2,
-0.675007701E-3,
2566-0.190429688E-1,
-0.146484375E-1
2570+4095.0000000000000,
+0.0000000000000000,
2571+0.0000000000000000,
+24576.000000000000,
2572-67584.000000000000,
+0.0000000000000000,
2573+0.0000000000000000,
-112640.00000000000,
2574+126720.00000000000,
+0.0000000000000000,
2575+0.0000000000000000,
+101376.00000000000,
2576-59136.000000000000,
+0.0000000000000000,
2577+0.0000000000000000,
-25344.000000000000,
2578+7920.0000000000000,
+0.0000000000000000,
2579+0.0000000000000000,
+1760.0000000000000,
2580-264.00000000000000,
+0.0000000000000000,
2581+0.0000000000000000,
-24.000000000000000,
2582+1.0000000000000000,
+0.0000000000000000
2584[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2590-0.22127855103803995E-10,
+3.0000000012083348,
2591+0.50000000092178387,
+2.8660254036044090,
2592+0.86602540366466041,
+2.4999999995817723,
2593-0.50000000092225982,
+2.8660254035707347,
2594-0.86602540364973568,
+2.4999999995766795,
2595+0.99999999988689936,
+2.0000000000036473,
2596-0.99999999988111377,
+2.0000000000065561,
2597+0.86602540376976866,
+1.5000000000087796,
2598-0.86602540376847770,
+1.5000000000108240,
2599+0.49999999999651829,
+1.1339745962147472,
2600+0.18475302723801401E-12,
+0.99999999999813760,
2601-0.49999999999610956,
+1.1339745962153789
2603+0.14059878594707698E-7,
+0.26553426475682450E-9,
2604+0.46070454118307680E-8,
-0.11811152944574133E-7,
2605-0.32819116313476115E-8,
-0.20859260985162109E-8,
2606+0.47079993237275630E-8,
+0.13283624866744503E-7,
2607-0.23110260372050107E-8,
+0.18424088921165094E-8,
2608-0.16898411558941007E-8,
+0.26602720026858151E-10,
2609-0.92268237494863570E-9,
-0.49340087571181357E-10,
2610-0.29012880986556411E-9,
+0.29558577807620168E-10,
2611-0.10641088010743260E-9,
-0.33196556614711881E-10,
2612-0.22737367544323206E-11,
-0.93223206931725144E-11,
2613+0.19554136088117957E-10,
+0.22170363269036277E-11,
2614-0.90949470177292824E-12,
+0.60936145018786192E-10
2618+4095.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2619+0.00000000000000000000000000000000000,
+24576.0000000000000000000000000000000,
2620-67584.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2621+0.00000000000000000000000000000000000,
-112640.000000000000000000000000000000,
2622+126720.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2623+0.00000000000000000000000000000000000,
+101376.000000000000000000000000000000,
2624-59136.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2625+0.00000000000000000000000000000000000,
-25344.0000000000000000000000000000000,
2626+7920.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2627+0.00000000000000000000000000000000000,
+1760.00000000000000000000000000000000,
2628-264.000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2629+0.00000000000000000000000000000000000,
-24.0000000000000000000000000000000000,
2630+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
2632[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2638+0.866025403784438646763723170731842991,
+2.49999999999999999999999999930164047,
2639+0.500000000000000000000000001261300765,
+2.86602540378443864676372317070946253,
2640-0.347698086029325849838930767012779505E-28,
+3.00000000000000000000000000152269067,
2641-0.500000000000000000000000001265360529,
+2.86602540378443864676372317065155482,
2642-0.866025403784438646763723170698404803,
+2.49999999999999999999999999929392211,
2643+0.999999999999999999999999999757820376,
+1.99999999999999999999999999995932648,
2644-0.999999999999999999999999999750830695,
+1.99999999999999999999999999997135064,
2645+0.866025403784438646763723170716402811,
+1.50000000000000000000000000003897716,
2646-0.866025403784438646763723170717795451,
+1.50000000000000000000000000004211450,
2647+0.499999999999999999999999999996946149,
+1.13397459621556135323627682925377416,
2648+0.400031557749517858232708991895941675E-31,
+1.00000000000000000000000000000101670,
2649-0.499999999999999999999999999997192042,
+1.13397459621556135323627682925417245
2651-0.494852445845140705534777329001891802E-26,
-0.688083924579027547270380241067910289E-26,
2652+0.716877347619594478167908333700731986E-26,
-0.143695944266664931679530181469792529E-25,
2653+0.144759920412581771352079250372217687E-25,
+0.417237703235191019806716927084944130E-27,
2654+0.751863328766146351737918495571023556E-26,
+0.134045217167417378505074447134264243E-25,
2655-0.646037638330747618041935108538337783E-26,
+0.660592122032075285851781500567805189E-26,
2656-0.272866987115947983491916910731315757E-26,
-0.464639073175175953387508124951561089E-27,
2657-0.310732310566556550151679881864889496E-26,
+0.336054745624151029105396368810466934E-27,
2658-0.737190515929035532157260344256763732E-27,
+0.264268403249038954812929069369733387E-27,
2659-0.575474030358728112047855988373792555E-27,
-0.318305375256678263483632476091604244E-27,
2660-0.686308987542280270708203851796024020E-28,
-0.315544362088404722164691426113114492E-29,
2661-0.138050658413677065947052498924487590E-28,
+0.480037869299421429879250790270093257E-30,
2662-0.958465999843529343575250206818585269E-28,
-0.457539325028186847138802567864016013E-28
2666+4095.00000,
+0.00000000,
2667+0.00000000,
+24576.0000,
2668-67584.0000,
+0.00000000,
2669+0.00000000,
-112640.000,
2670+126720.000,
+0.00000000,
2671+0.00000000,
+101376.000,
2672-59136.0000,
+0.00000000,
2673+0.00000000,
-25344.0000,
2674+7920.00000,
+0.00000000,
2675+0.00000000,
+1760.00000,
2676-264.000000,
+0.00000000,
2677+0.00000000,
-24.0000000,
2678+1.00000000,
+0.00000000
2680[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2686-0.102758408E-2,
+3.26374292,
2687+0.743275821,
+2.94730639,
2688-0.743724287,
+2.94551206,
2689+0.972983360,
+2.28771806,
2690-0.971354008,
+2.28610396,
2691+0.878654838,
+1.98345017,
2692+0.860098600,
+1.51398087,
2693-0.878169596,
+1.98575449,
2694-0.860523164,
+1.51400054,
2695+0.499328941,
+1.13599277,
2696-0.566091039E-4,
+1.00045466,
2697-0.499485791,
+1.13598478
2699+12.4841309,
+0.153654099,
2700-2.42480469,
-4.67864990,
2701-2.90429688,
+5.80480957,
2702-1.59033203,
-0.416015625,
2703-1.83007812,
+0.395629883,
2704-0.713867188,
-0.938720703E-1,
2705-0.152343750,
+0.140258789,
2706-0.572753906,
-0.150268555,
2707-0.998535156E-1,
-0.616455078E-1,
2708-0.258789062E-1,
-0.122070312E-2,
2709-0.170898438E-2,
-0.675007701E-3,
2710-0.190429688E-1,
-0.146484375E-1
2714+4095.0000000000000,
+0.0000000000000000,
2715+0.0000000000000000,
+24576.000000000000,
2716-67584.000000000000,
+0.0000000000000000,
2717+0.0000000000000000,
-112640.00000000000,
2718+126720.00000000000,
+0.0000000000000000,
2719+0.0000000000000000,
+101376.00000000000,
2720-59136.000000000000,
+0.0000000000000000,
2721+0.0000000000000000,
-25344.000000000000,
2722+7920.0000000000000,
+0.0000000000000000,
2723+0.0000000000000000,
+1760.0000000000000,
2724-264.00000000000000,
+0.0000000000000000,
2725+0.0000000000000000,
-24.000000000000000,
2726+1.0000000000000000,
+0.0000000000000000
2728[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2734-0.22127855103803995E-10,
+3.0000000012083348,
2735+0.50000000092178387,
+2.8660254036044090,
2736+0.86602540366466041,
+2.4999999995817723,
2737-0.50000000092225982,
+2.8660254035707347,
2738-0.86602540364973568,
+2.4999999995766795,
2739+0.99999999988689936,
+2.0000000000036473,
2740-0.99999999988111377,
+2.0000000000065561,
2741+0.86602540376976866,
+1.5000000000087796,
2742-0.86602540376847770,
+1.5000000000108240,
2743+0.49999999999651829,
+1.1339745962147472,
2744+0.18475302723801401E-12,
+0.99999999999813760,
2745-0.49999999999610956,
+1.1339745962153789
2747+0.14059878594707698E-7,
+0.26553426475682450E-9,
2748+0.46070454118307680E-8,
-0.11811152944574133E-7,
2749-0.32819116313476115E-8,
-0.20859260985162109E-8,
2750+0.47079993237275630E-8,
+0.13283624866744503E-7,
2751-0.23110260372050107E-8,
+0.18424088921165094E-8,
2752-0.16898411558941007E-8,
+0.26602720026858151E-10,
2753-0.92268237494863570E-9,
-0.49340087571181357E-10,
2754-0.29012880986556411E-9,
+0.29558577807620168E-10,
2755-0.10641088010743260E-9,
-0.33196556614711881E-10,
2756-0.22737367544323206E-11,
-0.93223206931725144E-11,
2757+0.19554136088117957E-10,
+0.22170363269036277E-11,
2758-0.90949470177292824E-12,
+0.60936145018786192E-10
2762+4095.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2763+0.00000000000000000000000000000000000,
+24576.0000000000000000000000000000000,
2764-67584.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2765+0.00000000000000000000000000000000000,
-112640.000000000000000000000000000000,
2766+126720.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2767+0.00000000000000000000000000000000000,
+101376.000000000000000000000000000000,
2768-59136.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2769+0.00000000000000000000000000000000000,
-25344.0000000000000000000000000000000,
2770+7920.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2771+0.00000000000000000000000000000000000,
+1760.00000000000000000000000000000000,
2772-264.000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2773+0.00000000000000000000000000000000000,
-24.0000000000000000000000000000000000,
2774+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
2776[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2782+0.866025403784438646763723170731842991,
+2.49999999999999999999999999930164047,
2783+0.500000000000000000000000001261300765,
+2.86602540378443864676372317070946253,
2784-0.347698086029325849838930767012779505E-28,
+3.00000000000000000000000000152269067,
2785-0.500000000000000000000000001265360529,
+2.86602540378443864676372317065155482,
2786-0.866025403784438646763723170698404803,
+2.49999999999999999999999999929392211,
2787+0.999999999999999999999999999757820376,
+1.99999999999999999999999999995932648,
2788-0.999999999999999999999999999750830695,
+1.99999999999999999999999999997135064,
2789+0.866025403784438646763723170716402811,
+1.50000000000000000000000000003897716,
2790-0.866025403784438646763723170717795451,
+1.50000000000000000000000000004211450,
2791+0.499999999999999999999999999996946149,
+1.13397459621556135323627682925377416,
2792+0.400031557749517858232708991895941675E-31,
+1.00000000000000000000000000000101670,
2793-0.499999999999999999999999999997192042,
+1.13397459621556135323627682925417245
2795-0.494852445845140705534777329001891802E-26,
-0.688083924579027547270380241067910289E-26,
2796+0.716877347619594478167908333700731986E-26,
-0.143695944266664931679530181469792529E-25,
2797+0.144759920412581771352079250372217687E-25,
+0.417237703235191019806716927084944130E-27,
2798+0.751863328766146351737918495571023556E-26,
+0.134045217167417378505074447134264243E-25,
2799-0.646037638330747618041935108538337783E-26,
+0.660592122032075285851781500567805189E-26,
2800-0.272866987115947983491916910731315757E-26,
-0.464639073175175953387508124951561089E-27,
2801-0.310732310566556550151679881864889496E-26,
+0.336054745624151029105396368810466934E-27,
2802-0.737190515929035532157260344256763732E-27,
+0.264268403249038954812929069369733387E-27,
2803-0.575474030358728112047855988373792555E-27,
-0.318305375256678263483632476091604244E-27,
2804-0.686308987542280270708203851796024020E-28,
-0.315544362088404722164691426113114492E-29,
2805-0.138050658413677065947052498924487590E-28,
+0.480037869299421429879250790270093257E-30,
2806-0.958465999843529343575250206818585269E-28,
-0.457539325028186847138802567864016013E-28
2810+4095.00000,
+0.00000000,
2811+0.00000000,
+24576.0000,
2812-67584.0000,
+0.00000000,
2813+0.00000000,
-112640.000,
2814+126720.000,
+0.00000000,
2815+0.00000000,
+101376.000,
2816-59136.0000,
+0.00000000,
2817+0.00000000,
-25344.0000,
2818+7920.00000,
+0.00000000,
2819+0.00000000,
+1760.00000,
2820-264.000000,
+0.00000000,
2821+0.00000000,
-24.0000000,
2822+1.00000000,
+0.00000000
2824[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2830-0.102758408E-2,
+3.26374292,
2831+0.743275821,
+2.94730639,
2832-0.743724287,
+2.94551206,
2833+0.972983360,
+2.28771806,
2834-0.971354008,
+2.28610396,
2835+0.878654838,
+1.98345017,
2836+0.860098600,
+1.51398087,
2837-0.878169596,
+1.98575449,
2838-0.860523164,
+1.51400054,
2839+0.499328941,
+1.13599277,
2840-0.566091039E-4,
+1.00045466,
2841-0.499485791,
+1.13598478
2843+12.4841309,
+0.153654099,
2844-2.42480469,
-4.67864990,
2845-2.90429688,
+5.80480957,
2846-1.59033203,
-0.416015625,
2847-1.83007812,
+0.395629883,
2848-0.713867188,
-0.938720703E-1,
2849-0.152343750,
+0.140258789,
2850-0.572753906,
-0.150268555,
2851-0.998535156E-1,
-0.616455078E-1,
2852-0.258789062E-1,
-0.122070312E-2,
2853-0.170898438E-2,
-0.675007701E-3,
2854-0.190429688E-1,
-0.146484375E-1
2858+4095.0000000000000,
+0.0000000000000000,
2859+0.0000000000000000,
+24576.000000000000,
2860-67584.000000000000,
+0.0000000000000000,
2861+0.0000000000000000,
-112640.00000000000,
2862+126720.00000000000,
+0.0000000000000000,
2863+0.0000000000000000,
+101376.00000000000,
2864-59136.000000000000,
+0.0000000000000000,
2865+0.0000000000000000,
-25344.000000000000,
2866+7920.0000000000000,
+0.0000000000000000,
2867+0.0000000000000000,
+1760.0000000000000,
2868-264.00000000000000,
+0.0000000000000000,
2869+0.0000000000000000,
-24.000000000000000,
2870+1.0000000000000000,
+0.0000000000000000
2872[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2878-0.22127855103803995E-10,
+3.0000000012083348,
2879+0.50000000092178387,
+2.8660254036044090,
2880+0.86602540366466041,
+2.4999999995817723,
2881-0.50000000092225982,
+2.8660254035707347,
2882-0.86602540364973568,
+2.4999999995766795,
2883+0.99999999988689936,
+2.0000000000036473,
2884-0.99999999988111377,
+2.0000000000065561,
2885+0.86602540376976866,
+1.5000000000087796,
2886-0.86602540376847770,
+1.5000000000108240,
2887+0.49999999999651829,
+1.1339745962147472,
2888+0.18475302723801401E-12,
+0.99999999999813760,
2889-0.49999999999610956,
+1.1339745962153789
2891+0.14059878594707698E-7,
+0.26553426475682450E-9,
2892+0.46070454118307680E-8,
-0.11811152944574133E-7,
2893-0.32819116313476115E-8,
-0.20859260985162109E-8,
2894+0.47079993237275630E-8,
+0.13283624866744503E-7,
2895-0.23110260372050107E-8,
+0.18424088921165094E-8,
2896-0.16898411558941007E-8,
+0.26602720026858151E-10,
2897-0.92268237494863570E-9,
-0.49340087571181357E-10,
2898-0.29012880986556411E-9,
+0.29558577807620168E-10,
2899-0.10641088010743260E-9,
-0.33196556614711881E-10,
2900-0.22737367544323206E-11,
-0.93223206931725144E-11,
2901+0.19554136088117957E-10,
+0.22170363269036277E-11,
2902-0.90949470177292824E-12,
+0.60936145018786192E-10
2906+4095.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2907+0.00000000000000000000000000000000000,
+24576.0000000000000000000000000000000,
2908-67584.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2909+0.00000000000000000000000000000000000,
-112640.000000000000000000000000000000,
2910+126720.000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2911+0.00000000000000000000000000000000000,
+101376.000000000000000000000000000000,
2912-59136.0000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2913+0.00000000000000000000000000000000000,
-25344.0000000000000000000000000000000,
2914+7920.00000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2915+0.00000000000000000000000000000000000,
+1760.00000000000000000000000000000000,
2916-264.000000000000000000000000000000000,
+0.00000000000000000000000000000000000,
2917+0.00000000000000000000000000000000000,
-24.0000000000000000000000000000000000,
2918+1.00000000000000000000000000000000000,
+0.00000000000000000000000000000000000
2920[
same_type_as(method,
sgl),
same_type_as(method,
eigen),
same_type_as(method,
jenkins),
same_type_as(method,
laguerre)]
2926+0.866025403784438646763723170731842991,
+2.49999999999999999999999999930164047,
2927+0.500000000000000000000000001261300765,
+2.86602540378443864676372317070946253,
2928-0.347698086029325849838930767012779505E-28,
+3.00000000000000000000000000152269067,
2929-0.500000000000000000000000001265360529,
+2.86602540378443864676372317065155482,
2930-0.866025403784438646763723170698404803,
+2.49999999999999999999999999929392211,
2931+0.999999999999999999999999999757820376,
+1.99999999999999999999999999995932648,
2932-0.999999999999999999999999999750830695,
+1.99999999999999999999999999997135064,
2933+0.866025403784438646763723170716402811,
+1.50000000000000000000000000003897716,
2934-0.866025403784438646763723170717795451,
+1.50000000000000000000000000004211450,
2935+0.499999999999999999999999999996946149,
+1.13397459621556135323627682925377416,
2936+0.400031557749517858232708991895941675E-31,
+1.00000000000000000000000000000101670,
2937-0.499999999999999999999999999997192042,
+1.13397459621556135323627682925417245
2939-0.494852445845140705534777329001891802E-26,
-0.688083924579027547270380241067910289E-26,
2940+0.716877347619594478167908333700731986E-26,
-0.143695944266664931679530181469792529E-25,
2941+0.144759920412581771352079250372217687E-25,
+0.417237703235191019806716927084944130E-27,
2942+0.751863328766146351737918495571023556E-26,
+0.134045217167417378505074447134264243E-25,
2943-0.646037638330747618041935108538337783E-26,
+0.660592122032075285851781500567805189E-26,
2944-0.272866987115947983491916910731315757E-26,
-0.464639073175175953387508124951561089E-27,
2945-0.310732310566556550151679881864889496E-26,
+0.336054745624151029105396368810466934E-27,
2946-0.737190515929035532157260344256763732E-27,
+0.264268403249038954812929069369733387E-27,
2947-0.575474030358728112047855988373792555E-27,
-0.318305375256678263483632476091604244E-27,
2948-0.686308987542280270708203851796024020E-28,
-0.315544362088404722164691426113114492E-29,
2949-0.138050658413677065947052498924487590E-28,
+0.480037869299421429879250790270093257E-30,
2950-0.958465999843529343575250206818585269E-28,
-0.457539325028186847138802567864016013E-28
- Benchmarks:
Benchmark :: The effects of method
on runtime efficiency ⛓
- The following program compares the runtime performance of setPolyRoot using different polynomial root finding algorithms.
8 use iso_fortran_env,
only:
error_unit
12 integer(IK) ,
parameter :: degmax
= 9_IK
13 integer(IK) ,
allocatable :: rootCount(:)
17 integer(IK) :: fileUnit
18 integer(IK) :: rootUnit
19 real(RKG) :: dumsum
= 0._RKG
20 complex(RKG) :: coef(
0:
2**degmax)
21 complex(RKG) :: root(
2**degmax)
22 type(bench_type) ,
allocatable :: bench(:)
24 bench
= [
bench_type(name
= SK_
"Eigen", exec
= setPolyRootEigen, overhead
= setOverhead)
&
25 ,
bench_type(name
= SK_
"Jenkins", exec
= setPolyRootJenkins, overhead
= setOverhead)
&
26 ,
bench_type(name
= SK_
"Laguerre", exec
= setPolyRootLaguerre, overhead
= setOverhead)
&
27 ,
bench_type(name
= SK_
"SGL", exec
= setPolyRootSGL, overhead
= setOverhead)
&
29 allocate(rootCount(
size(bench)))
31 write(
*,
"(*(g0,:,' '))")
32 write(
*,
"(*(g0,:,' '))")
"Benchmarking setPolyRoot()"
33 write(
*,
"(*(g0,:,' '))")
35 open(newunit
= fileUnit, file
= "main.out", status
= "replace")
36 open(newunit
= rootUnit, file
= "root.count", status
= "replace")
38 write(fileUnit,
"(*(g0,:,','))")
"Polynomial Degree", (bench(ibench)
%name, ibench
= 1,
size(bench))
39 write(rootUnit,
"(*(g0,:,','))")
"Polynomial Degree", (bench(ibench)
%name, ibench
= 1,
size(bench))
40 loopOverArraySize:
do ideg
= 0, degmax
43 call setUnifRand(coef(
0 : degree), (
1._RKG,
1._RKG), (
2._RKG,
2._RKG))
44 write(
*,
"(*(g0,:,' '))")
"Benchmarking with coef size", degree
45 do ibench
= 1,
size(bench)
46 bench(ibench)
%timing
= bench(ibench)
%getTiming(minsec
= 0.07_RK)
48 write(rootUnit,
"(*(g0,:,','))") degree, rootCount
49 write(fileUnit,
"(*(g0,:,','))") degree, (bench(ibench)
%timing
%mean, ibench
= 1,
size(bench))
51 end do loopOverArraySize
52 write(
*,
"(*(g0,:,' '))") dumsum
53 write(
*,
"(*(g0,:,' '))")
63 subroutine setOverhead()
68 dumsum
= dumsum
+ rootCount(ibench)
71 subroutine setPolyRootEigen()
73 call setPolyRoot(root(
1 : degree), rootCount(ibench), coef(
0 : degree), method)
77 subroutine setPolyRootJenkins()
79 call setPolyRoot(root(
1 : degree), rootCount(ibench), coef(
0 : degree), method)
83 subroutine setPolyRootLaguerre()
85 call setPolyRoot(root(
1 : degree), rootCount(ibench), coef(
0 : degree), method)
89 subroutine setPolyRootSGL()
91 call setPolyRoot(root(
1 : degree), rootCount(ibench), coef(
0 : degree), method)
92 rootCount(ibench)
= root(
1)
%re
Generate and return an object of type timing_type containing the benchmark timing information and sta...
Return a uniform random scalar or contiguous array of arbitrary rank of randomly uniformly distribute...
This module contains abstract interfaces and types that facilitate benchmarking of different procedur...
This module contains classes and procedures for computing various statistical quantities related to t...
integer, parameter RK
The default real kind in the ParaMonte library: real64 in Fortran, c_double in C-Fortran Interoperati...
This is the class for creating benchmark and performance-profiling objects.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Postprocessing of the benchmark output ⛓
3import matplotlib.pyplot
as plt
8dirname = os.path.basename(os.getcwd())
12df = pd.read_csv(
"main.out", delimiter =
",")
13colnames = list(df.columns.values)
19ax = plt.figure(figsize = 1.25 * np.array([6.4,4.6]), dpi = 200)
22for colname
in colnames[1:]:
23 plt.plot( df[colnames[0]].values
28plt.xticks(fontsize = fontsize)
29plt.yticks(fontsize = fontsize)
30ax.set_xlabel(colnames[0], fontsize = fontsize)
31ax.set_ylabel(
"Runtime [ seconds ]", fontsize = fontsize)
32ax.set_title(
" vs. ".join(colnames[1:])+
"\nLower is better.", fontsize = fontsize)
36plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
37ax.tick_params(axis =
"y", which =
"minor")
38ax.tick_params(axis =
"x", which =
"minor")
39ax.legend ( colnames[1:]
46plt.savefig(
"benchmark." + dirname +
".runtime.png")
52ax = plt.figure(figsize = 1.25 * np.array([6.4,4.6]), dpi = 200)
55plt.plot( df[colnames[0]].values
56 , np.ones(len(df[colnames[0]].values))
61for colname
in colnames[2:]:
62 plt.plot( df[colnames[0]].values
63 , df[colname].values / df[colnames[1]].values
67plt.xticks(fontsize = fontsize)
68plt.yticks(fontsize = fontsize)
69ax.set_xlabel(colnames[0], fontsize = fontsize)
70ax.set_ylabel(
"Runtime compared to {}".format(colnames[1]), fontsize = fontsize)
71ax.set_title(
"Runtime Ratio Comparison. Lower means faster.\nLower than 1 means faster than {}.".format(colnames[1]), fontsize = fontsize)
75plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
76ax.tick_params(axis =
"y", which =
"minor")
77ax.tick_params(axis =
"x", which =
"minor")
78ax.legend ( colnames[1:]
85plt.savefig(
"benchmark." + dirname +
".runtime.ratio.png")
91df = pd.read_csv(
"root.count", delimiter =
",")
92colnames = list(df.columns.values)
94ax = plt.figure(figsize = 1.25 * np.array([6.4,4.6]), dpi = 200)
97plt.plot( range(1, df[colnames[0]].values[-1] * 2)
98 , range(1, df[colnames[0]].values[-1] * 2)
103for colname
in colnames[1:-1]:
104 plt.plot( df[colnames[0]].values
109plt.xticks(fontsize = fontsize)
110plt.yticks(fontsize = fontsize)
111ax.set_xlabel(colnames[0], fontsize = fontsize)
112ax.set_ylabel(
"Number of Roots Found", fontsize = fontsize)
113ax.set_title(
" vs. ".join(colnames[1:])+
"\nHigher is better.", fontsize = fontsize)
117plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
118ax.tick_params(axis =
"y", which =
"minor")
119ax.tick_params(axis =
"x", which =
"minor")
120ax.legend ( [
"Equality"] + list(colnames[1:])
123 , fontsize = fontsize
127plt.savefig(
"benchmark." + dirname +
".root.count.png")
Visualization of the benchmark output ⛓
Benchmark moral ⛓
- Among all root finding algorithms, jenkins_type appears to be the fastest.
- The eigen_type method also tends to offer a comparably good performance.
- Unlike the above two, laguerre_type algorithm tends to significantly trail behind both in performance and reliability in finding all roots of the polynomial.
- Test:
- test_pm_polynomial
- Todo:
- Critical Priority: The current implementation relies on several local allocations, the most important of which are called
workspace
in the current implementation.
Although this generic interface used to accept a workspace
argument, it was subsequently removed in favor of simplicity.
A new set of interfaces can be added in the future to allow specification of scratch space arguments to avoid repeated local allocations.
This could boost performance when this generic interface is called many times repeatedly.
- Todo:
- Critical Priority: The generic interface for the Eigenvalue method internally uses the eigenvalue computing routine of EISPACK for upper Hessenberg matrices to compute the roots of the polynomial.
This internal implementation should be substituted with the corresponding external routine once it is implemented in the ParaMonte library.
- Todo:
- Low Priority: The existing implementations of the algorithms for the Jenkins-Traub method contain relics of F77 coding style in the form of a few
goto
statements.
These remaining goto statements should be carefully removed in the future.
- Todo:
- Critical Priority: The method of Skowron-Gould must be fully implemented.
- Todo:
- Normal Priority: A benchmark comparing the runtime performances of the
complex
vs. real
coefficient routines of this module should be added here.
Final Remarks ⛓
If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.
-
If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
-
If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.
This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.
- Copyright
- Computational Data Science Lab
Copyright © 1996 California Institute of Technology, Pasadena, California. ALL RIGHTS RESERVED. Based on Government Sponsored Research NAS7-03001. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain this copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the California Institute of Technology (Caltech) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. For those codes indicated with a Math a la Carte copyright, the same rules apply, except without the full force of the Caltech legal team. When citing this software we request that you also mention the names of the people who wrote the software you are using. Designed by C. L. Lawson, JPL, May 1986. Programmed by C. L. Lawson and S. Y. Chiu, JPL, May 1986, Feb. 1987.
- Author:
- Amir Shahmoradi, Oct 16, 2009, 11:14 AM, Michigan Fatemeh Bagheri, Friday 09:51 AM, September 6, 2024, NASA Goddard Space Flight Center, Washington, D.C.
Definition at line 4619 of file pm_polynomial.F90.