Return the Cumulative Distribution Function (CDF) of the (Truncated) PiwiPoweto distribution for an input logx
within the support of the distribution logLimX(1) <= logx <= logLimX(size(logLimX))
.
More...
Return the Cumulative Distribution Function (CDF) of the (Truncated) PiwiPoweto distribution for an input logx
within the support of the distribution logLimX(1) <= logx <= logLimX(size(logLimX))
.
See the documentation of pm_distPiwiPoweto for more information on the (Truncated) PiwiPoweto distribution.
- Parameters
-
[out] | cdf | : The output scalar of the same type and kind the input argument logx , containing the Cumulative Distribution Function (CDF) at the specified logx .
|
[in] | logx | : The input scalar of type real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128), containing the natural logarithm of the point at which the CDF must be computed.
|
[in] | alpha | : The input vector of the same type and kind as logx , of the same size n as the number of the power-law components of the distribution, containing the shape parameter of the distribution (i.e., the exponents of the power-law components of the distribution).
|
[in] | logLimX | : The input vector of the same type and kind as alpha , of size size(alpha) + 1 containing the natural logarithm of the scale parameters (i.e., the break points, or the limits) of the n power-law components of the distribution.
The scale parameter(s) must be in ascending order, such that logLimX(1) <= x <= logLimX(size(logLimX)) .
Setting logLimX(1) <= -log(huge(logLimX)) effectively implies a left-opened semi-infinite support for the distribution.
Setting logLimX(size(logLimX)) >= log(huge(logLimX)) effectively implies a right-opened semi-infinite support for the distribution.
|
[in] | logPDFNF | : The input vector of the same type, kind, and size as alpha , containing the natural logarithm of the normalization factors ( \(\eta\)) of power-law components of the distribution of the (Truncated) PiwiPoweto distribution.
Specifying this argument when calling this procedure repeatedly with fixed \((\alpha, x_\mathrm{lim})\) parameters significantly improves the runtime performance.
This input vector can be readily obtained by calling getPiwiPowetoLogPDFNF(alpha, logLimX).
|
[in] | cumSumArea | : The output vector of the same type, kind, and size as logLimX , each element of which corresponds to cumulative area underneath the distribution from the minimum of the support exp(logLimX(1)) to the corresponding element of exp(logLimX) .
By definition, cumSumArea(1) == 0. and cumSumArea(size(cumSumArea)) == 1. , and isAscending(cumSumArea) hold.
This output vector is a side-product of the computation of the normalization factors.
It is also required for random number generation from the (Truncated) PiwiPoweto distribution.
Precomputing and supplying this vector to the random number generator routines significantly improves the runtime performance.
This vector can be readily obtained by calling getPiwiPowetoLogPDFNF(alpha, logLimX, cumSumArea).
|
Possible calling interfaces ⛓
call setPiwiPowetoCDF(cdf, logx, alpha(
1:n), logLimX(
1:n
+1), logPDFNF(
1:n), cumSumArea(
1:n
+1))
call setPiwiPowetoCDF(cdf, logx, alpha(
1:n), logLimX(
1:n
+1), logPDFNF(
1:n), cumSumArea(
1:n
+1), bin)
Return the Cumulative Distribution Function (CDF) of the (Truncated) PiwiPoweto distribution for an i...
This module contains classes and procedures for computing various statistical quantities related to t...
- Warning
- The condition
size(alpha) > 0
must hold for the corresponding input arguments.
The condition size(logLimX) == size(alpha) + 1
must hold for the corresponding input arguments.
The condition size(cumSumArea) == size(alpha) + 1
must hold for the corresponding input arguments.
The condition size(logPDFNF) == size(alpha)
must hold for the corresponding input arguments.
The conditions logLimX(1) <= logx .and. logx <= logLimX(size(logLimX))
must hold for the corresponding input arguments.
The conditions 0 < bin .and. bin < size(logLimX)
must hold for the corresponding input arguments.
These conditions are verified only if the library is built with the preprocessor macro CHECK_ENABLED=1
.
-
The
pure
procedure(s) documented herein become impure
when the ParaMonte library is compiled with preprocessor macro CHECK_ENABLED=1
.
By default, these procedures are pure
in release
build and impure
in debug
and testing
builds.
- See also
- getPiwiPowetoCDF
Example usage ⛓
12 integer(IK),
parameter :: NP
= 999_IK
13 real :: logx(NP), CDF(NP)
14 real,
allocatable :: logLimX(:), alpha(:), cumSumArea(:)
16 type(display_type) :: disp
22 call disp%show(
"alpha = [1., 0., -1.5]")
23 alpha
= [
1.,
0.,
-1.5]
24 call disp%show(
"logLimX = log([0.5, 1., 1.5, huge(0.)])")
25 logLimX
= log([
0.5,
1.,
1.5,
huge(
0.)])
26 call disp%show(
"if (allocated(cumSumArea)) deallocate(cumSumArea); allocate(cumSumArea, mold = logLimX)")
27 if (
allocated(cumSumArea))
deallocate(cumSumArea);
allocate(cumSumArea,
mold = logLimX)
28 call disp%show(
"call setPiwiPowetoCDF(CDF(1), logx(1), alpha, logLimX, logPDFNF = getPiwiPowetoLogPDFNF(alpha, logLimX, cumSumArea), cumSumArea = cumSumArea)")
35 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
36 call disp%show(
"! If the target `x` value is known a prior to belong to a specific component of the CDF, specify it explicitly to expedite the CDF computation.")
37 call disp%show(
"!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
43 call disp%show(
"alpha = [1., 0., -1.5]")
44 alpha
= [
1.,
0.,
-1.5]
45 call disp%show(
"logLimX = log([0.5, 1., 1.5, huge(0.)])")
46 logLimX
= log([
0.5,
1.,
1.5,
huge(
0.)])
47 call disp%show(
"if (allocated(cumSumArea)) deallocate(cumSumArea); allocate(cumSumArea, mold = logLimX)")
48 if (
allocated(cumSumArea))
deallocate(cumSumArea);
allocate(cumSumArea,
mold = logLimX)
49 call disp%show(
"call setPiwiPowetoCDF(CDF(1), logx(1), alpha, logLimX, logPDFNF = getPiwiPowetoLogPDFNF(alpha, logLimX, cumSumArea), cumSumArea = cumSumArea, bin = getBin(logLimX, logx(1)))")
60 real,
parameter :: LOG_HUGE
= log(
huge(
0.))
61 integer(IK) :: fileUnit, i
63 alpha
= [
3.,
1.,
-1.,
-5.]
64 logLimX
= log([
2.,
5.,
10.,
15.])
65 call setLinSpace(logx, x1
= log(
0.001), x2
= log(
20.), fopen
= .true._LK, lopen
= .true._LK)
66 if (
allocated(cumSumArea))
deallocate(cumSumArea);
allocate(cumSumArea(
size(logLimX)
+2))
67 open(newunit
= fileUnit, file
= "setPiwiPowetoCDF.RK.txt")
69 call setPiwiPowetoCDF(CDF(
1), logx(i), [alpha(
1:
2),
0., alpha(
3:
4)], [
-LOG_HUGE, logLimX(
1:
4), LOG_HUGE],
getPiwiPowetoLogPDFNF([alpha(
1:
2),
0., alpha(
3:
4)], [
-LOG_HUGE, logLimX(
1:
4), LOG_HUGE], cumSumArea(
1:
6)), cumSumArea(
1:
6))
70 if (logx(i)
> logLimX(
1))
then
75 if (logx(i)
< logLimX(
4))
then
80 if (logx(i)
> logLimX(
1)
.and. logx(i)
< logLimX(
4))
then
82 elseif (logx(i)
<= logLimX(
1))
then
87 write(fileUnit,
"(*(g0,:,', '))")
exp(logx(i)), CDF
Generate and return bin, the index of the element of the input ascending-ordered array,...
Return the linSpace output argument with size(linSpace) elements of evenly-spaced values over the int...
Generate and return the natural logarithm of the normalization factors of the components of the Proba...
This is a generic method of the derived type display_type with pass attribute.
This is a generic method of the derived type display_type with pass attribute.
This module contains procedures and generic interfaces for finding the specific array index whose ele...
This module contains procedures and generic interfaces for generating arrays with linear or logarithm...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
Generate and return an object of type display_type.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example output ⛓
4logLimX
= log([
0.5,
1.,
1.5,
huge(
0.)])
5if (
allocated(cumSumArea))
deallocate(cumSumArea);
allocate(cumSumArea,
mold = logLimX)
18logLimX
= log([
0.5,
1.,
1.5,
huge(
0.)])
19if (
allocated(cumSumArea))
deallocate(cumSumArea);
allocate(cumSumArea,
mold = logLimX)
Postprocessing of the example output ⛓
3import matplotlib.pyplot
as plt
16xlab = {
"CK" :
"X ( real/imaginary components )"
17 ,
"IK" :
"X ( integer-valued )"
18 ,
"RK" :
"X ( real-valued )"
20legends = [
r"5-piece Poweto"
21 ,
r"3-piece left-truncated Poweto"
22 ,
r"4-piece right-truncated Poweto"
23 ,
r"4-piece doubly-truncated Poweto"
26for kind
in [
"IK",
"CK",
"RK"]:
28 pattern =
"*." + kind +
".txt"
29 fileList = glob.glob(pattern)
30 if len(fileList) == 1:
32 df = pd.read_csv(fileList[0], delimiter =
", ")
34 fig = plt.figure(figsize = 1.25 * np.array([6.4, 4.8]), dpi = 200)
38 plt.plot( df.values[:, 0]
41 , linewidth = linewidth
44 plt.plot( df.values[:, 1]
47 , linewidth = linewidth
51 plt.plot( df.values[:, 0]
54 , linewidth = linewidth
61 plt.xticks(fontsize = fontsize - 2)
62 plt.yticks(fontsize = fontsize - 2)
63 ax.set_xlabel(xlab[kind], fontsize = 17)
64 ax.set_ylabel(
"Cumulative Distribution Function (CDF)", fontsize = 17)
68 plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
69 ax.tick_params(axis =
"y", which =
"minor")
70 ax.tick_params(axis =
"x", which =
"minor")
73 plt.savefig(fileList[0].replace(
".txt",
".png"))
75 elif len(fileList) > 1:
77 sys.exit(
"Ambiguous file list exists.")
Visualization of the example output ⛓
- Test:
- test_pm_distPiwiPoweto
- Todo:
- Low Priority: This generic interface can be extended to
complex
arguments.
Final Remarks ⛓
If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.
-
If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
-
If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.
This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.
- Copyright
- Computational Data Science Lab
- Author:
- Amir Shahmoradi, Oct 16, 2009, 11:14 AM, Michigan
Definition at line 967 of file pm_distPiwiPoweto.F90.