Generate and return the lower right edges of the rectangles of a Ziggurat partitioning of the Normal density function (and the corresponding density function values) to be used for Normal random number generation using the Ziggurat algorithm.
More...
Generate and return the lower right edges of the rectangles of a Ziggurat partitioning of the Normal density function (and the corresponding density function values) to be used for Normal random number generation using the Ziggurat algorithm.
See the documentation of pm_ziggurat for information on the Ziggurat method.
See the documentation of getZig for the meaning of the elements of the output array.
- Parameters
-
[in] | nlay | : See the documentation of the corresponding argument of getZig.
|
[in] | abserr | : See the documentation of the corresponding argument of getZig.
|
[in] | abstol | : See the documentation of the corresponding argument of getZig.
|
- Returns
zig
: See the documentation of the corresponding output of getZig.
Possible calling interfaces ⛓
zig(
1 :
2,
0 : nlay)
= getZigNorm(nlay, abserr, abstol
= abstol)
Generate and return the lower right edges of the rectangles of a Ziggurat partitioning of the Normal ...
This module contains classes and procedures for computing various statistical quantities related to t...
- Warning
- All conditions that hold for getZig equally apply to the procedures of this generic interface.
These conditions are verified only if the library is built with the preprocessor macro CHECK_ENABLED=1
.
- See also
- getZig
getNormRand
setNormRand
Example usage ⛓
11 type(display_type) :: disp
16 real(RKG),
allocatable :: zig(:,:)
22 call disp%show(
"call setRebound(zig, [1_IK, 0_IK], [2_IK, nlayer])")
23 call setRebound(zig, [
1_IK,
0_IK], [
2_IK, nlayer])
24 call disp%show(
"zig(:,:) = getZigNorm(nlayer, abserr, abstol = epsilon(0._RKG)) ! rectangle rightmost corners and the corresponding function values.")
25 zig(:,:)
= getZigNorm(nlayer, abserr, abstol
= epsilon(
0._RKG))
26 call disp%show(
"[nlayer, shape(zig, IK)]")
30 call disp%show(
"zig(1, 1) ! The upper rightmost corner of the lowest rectangle (which has a tail) in the ziggurat set.")
34 call disp%show(
"reshape(zig(1, 1 : nlayer - 1) * (zig(2, 2 : nlayer) - zig(2, 1 : nlayer - 1)), [nlayer - 1, 1]) ! area of each partition.")
35 call disp%show(
reshape(zig(
1,
1 : nlayer
- 1)
* (zig(
2,
2 : nlayer)
- zig(
2,
1 : nlayer
- 1)), [nlayer
- 1,
1]) )
47 if (
0 /= getErrTableWrite(SK_
"getZigNorm.RK.txt",
getZigNorm(
64_IK, abserr), trans))
error stop "Failed to write the table to the file."
Resize (shrink or expand) an input allocatable array of rank 1..3 to arbitrary new lower and upper bo...
Generate and return the iostat code resulting from writing the input table of rank 1 or 2 to the spec...
This is a generic method of the derived type display_type with pass attribute.
This is a generic method of the derived type display_type with pass attribute.
This module contains procedures and generic interfaces for resizing allocatable arrays of various typ...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter RK
The default real kind in the ParaMonte library: real64 in Fortran, c_double in C-Fortran Interoperati...
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
integer, parameter RKH
The scalar integer constant of intrinsic default kind, representing the highest-precision real kind t...
Generate and return an object of type display_type.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example output ⛓
3call setRebound(zig, [
1_IK,
0_IK], [
2_IK, nlayer])
4zig(:,:)
= getZigNorm(nlayer, abserr, abstol
= epsilon(
0._RKG))
5[nlayer,
shape(zig,
IK)]
8+0.562732655625645475814793555099033451E-33
10+3.65415288536100877164542972039951567
12+3.91075795952491586954962143451057164,
+0.00000000000000000000000000000000000
13+3.65415288536100877164542972039951567,
+0.502781343070952005087938400241541891E-3
14+3.44927829856143127062722821383361125,
+0.104086943106322506013635915064907845E-2
15+3.32024473383982551753223298444223070,
+0.161091799459473453538408742342021986E-2
16+3.22457505204780158714401982876477550,
+0.220312016549958827311372671027399889E-2
17+3.14788928951800068545185519408441358,
+0.281289233937616172611348633870502865E-2
18+3.08352613200214325187776894761719884,
+0.343751917929162224416229759239016324E-2
19+3.02783779176959352457171458421560715,
+0.407518400039001087464038448139061472E-2
20+2.97860327988184316553697421229480803,
+0.472457682607575925888895096351016103E-2
21+2.93436686720888758995992897956767764,
+0.538470372266379748395288853907771468E-2
22+2.89412105361341218138810035621010380,
+0.605478221942164063991037466747021604E-2
23+2.85713873087322458856164526805322692,
+0.673417886624137640800598237565554838E-2
24+2.82287739682644290753411551564659353,
+0.742236950888280249329920345563351449E-2
25+2.79092117400192731899777904546829307,
+0.811891273868296054077142626445965006E-2
26+2.76094400527998620124438239249269524,
+0.882343143223528339445647449425005264E-2
27+2.73268535904401142004318251304667814,
+0.953559949343287212693559957627379651E-2
28+2.70593365612306222133370022599857446,
+0.102551320707227866483396053794922990E-1
29+2.68051464328574510109837461143132338,
+0.109817781711791129427823736030159900E-1
30+2.65628303757674329680212430455951200,
+0.117153149732408013682731286377880085E-1
31+2.63311639363158275997630929251689314,
+0.124555433719091587849084452906815838E-1
32+2.61091051848882367193026369447895545,
+0.132022844366303809959357880408105012E-1
33+2.58957598670828664980880557450790070,
+0.139553765573260408177619288977468218E-1
34+2.56903545268184378131426292152808191,
+0.147146731176153334234423656007745630E-1
35+2.54922155032478310442267137124174665,
+0.154800405777112059806768992081788185E-1
36+2.53007523215985418771653908412687637,
+0.162513568797661774124156785927309438E-1
37+2.51154444162669434325460734458008439,
+0.170285101099635321775373808069033731E-1
38+2.49358304127104676817005329650681329,
+0.178113973671931254109163549358583312E-1
39+2.47614993967052316375621626816216650,
+0.185999237995485118944697972790344771E-1
40+2.45920837433470503567385959648701918,
+0.193940017783549904963609637793049119E-1
41+2.44272531820036422379423491922545350,
+0.201935501858165129428739457647187713E-1
42+2.42667098493714671986352985163372696,
+0.209984937972267218821328887239805004E-1
43+2.41101841390111949169034921172503863,
+0.218087627424279111659346610629834973E-1
44+2.39574311978192735616868668141257476,
+0.226242920341075527766680294896069533E-1
45+2.38082279517208555650661969131938040,
+0.234450211528013514383037474818822027E-1
46+2.36623705671729091136214812814018600,
+0.242708936802748765008871090362921378E-1
47+2.35196722737914476190253075145396464,
+0.251018569743934986305835005740321359E-1
48+2.33799614879652863543348032709371394,
+0.259378618797451777000075273655017443E-1
49+2.32430801887113250826611915705079004,
+0.267788624692146997471273278024758566E-1
50+2.31088825060137175855061435586089542,
+0.276248158124683715174543699462393572E-1
51+2.29772334890286352007979081423052913,
+0.284756817679310236840265332909329685E-1
52+2.28480080272449212738783448693722335,
+0.293314227953502809501556980682789090E-1
53+2.27210899022838186193768371737391090,
+0.301920037864680654091842729977054983E-1
54+2.25963709517378762459756653116731177,
+0.310573919116731481152577086508924965E-1
55+2.24737503294738926229795239251565959,
+0.319275564808046037696524061552362067E-1
56+2.23531338492992111074836219967355024,
+0.328024688165248443463852626030938600E-1
57+2.22344334009251061136534640971692254,
+0.336821021388909593274737975695380343E-1
58+2.21175664288416099747050070926673121,
+0.345664314599311541791934500133628777E-1
59+2.20024554661127642771216517329183559,
+0.354554334871846263278378901217329216E-1
60+2.18890277162636074283957650560430588,
+0.363490865352926868627480678085691155E-1
61+2.17772146774029300257916407915250339,
+0.372473704448399433976210004282028638E-1
62+2.16669518035430854235313714212102654,
+0.381502665077398667348211240367435477E-1
63+2.15581781987673746911950367719750265,
+0.390577573985415074098963321878992358E-1
64+2.14508363404788898276799972957205387,
+0.399698271111055203479683284323823695E-1
65+2.13448718284601690917883660479624325,
+0.408864609001596660576863760104051322E-1
66+2.12402331568952354542071478747838486,
+0.418076452272979751244992871255722388E-1
67+2.11368715068665317778193519858900561,
+0.427333677110349512002228670090424488E-1
68+2.10347405571487730593371430404544045,
+0.436636170805675209921984193602696278E-1
69+2.09337963113879193016636158596166797,
+0.445983831329337385181389634688869380E-1
70+2.08339969399830461367079208817589721,
+0.455376566932892082093887264381438529E-1
71+2.07353026351874303464639324841697180,
+0.464814295780503946152953311870656232E-1
72+2.06376754781173211434185374907814963,
+0.474296945606789346776298063351001244E-1
73+2.05410793165065213021947566631381651,
+0.483824453399031873773625284851490337E-1
74+2.04454796521753145528262879274908296,
+0.493396765101929088581344120097015200E-1
75+2.03508435372961897141387194869498827,
+0.503013835343204408492863489427518069E-1
76+2.02571394786385424525239902595527206,
+0.512675627178574145127079248497036520E-1
77+2.01643373490620412387398857702327872,
+0.522382111854699318500836298767666937E-1
78+2.00724083056052875891323973819829909,
+0.532133268588876922360496499106520185E-1
79+1.99813247135841968039221476916285887,
+0.541929084364337554633405727268610055E-1
80+1.98910600761743812320102309121718091,
+0.551769553740117250736639942272910314E-1
81+1.98015889690047660554041669481576585,
+0.561654678674562273820736142229565223E-1
82+1.97128869793365929460635647443468655,
+0.571584468361607664497222499802473837E-1
83+1.96249306494436305282602438125697485,
+0.581558939079044529261453899150298019E-1
84+1.95376974238464677669257281181796306,
+0.591578114048058224055549195846209505E-1
85+1.94511656000867830123468628187539424,
+0.601642023303380532839147151743642514E-1
86+1.93653142827569470038070219713564877,
+0.611750703573454323914419246868044098E-1
87+1.92801233405266571032880895751001191,
+0.621904198170059582295143354352838012E-1
88+1.91955733659318811306428206346545713,
+0.632102556886895688287062083850491706E-1
89+1.91116456377125333834901611939866542,
+0.642345835906656803805852580678544053E-1
90+1.90283220855042926945278439923080368,
+0.652634097716175649174146849378032930E-1
91+1.89455852567070473204088569057595813,
+0.662967411029246168483446165075442866E-1
92+1.88634182853678282003785655330956316,
+0.673345850716767915010299444811729445E-1
93+1.87818048629299584468446799604364502,
+0.683769497743884728203642791575539760E-1
94+1.87007292107126677849633777629084183,
+0.694238439113817677925134633773045847E-1
95+1.86201760539967411866534878439792274,
+0.704752767818117550133248257276187773E-1
96+1.85401305976020190675089844118446149,
+0.715312582793085547211649297744966411E-1
97+1.84605785028518550557058095299144892,
+0.725917988882132560598516526262197654E-1
98+1.83815058658280663376493130489856170,
+0.736569096803867509488343563799016629E-1
99+1.83028991968275693375605567698408197,
+0.747266023125723976798301015314803279E-1
100+1.82247454009388583887189857161781026,
+0.758008890242951847298446370142010715E-1
101+1.81470317596628267168077234352247678,
+0.768797826362816984781690401687711081E-1
102+1.80697459135082093870342042838810753,
+0.779632965493867285846698800079747914E-1
103+1.79928758454972019934172868098423551,
+0.790514447440137817496961412302243116E-1
104+1.79164098655216259462438232213270931,
+0.801442417800181275436054931177368005E-1
105+1.78403365954944151297186407780794368,
+0.812417027970822772687529532474258376E-1
106+1.77646449552452286899612411927648420,
+0.823438435155550059817881401744955979E-1
107+1.76893241491126858902966515984095869,
+0.834506802377461758021915029242417507E-1
108+1.76143636531891028053979425159390846,
+0.845622298496707118376316534786168010E-1
109+1.75397532031767153517628649565027110,
+0.856785098232361263350014624915617177E-1
110+1.74654827828172241285361081991511129,
+0.867995382188689874348253633476266673E-1
111+1.73915426128591165726242005562811545,
+0.879253336885766911833903717911534395E-1
112+1.73179231405296315413793350580892500,
+0.890559154794418239043567001488716945E-1
113+1.72446150294804491205286239777566227,
+0.901913034375473009991491331657262247E-1
114+1.71716091501782308974165911960967678,
+0.913315180123313418058911041645338441E-1
115+1.70988965707130182024174548201610288,
+0.924765802613721921296195811766027943E-1
116+1.70264685479992315165390040705180577,
+0.936265118556033400788781021199070560E-1
117+1.69543165193456156829958808919262546,
+0.947813350849607903374772538857282822E-1
118+1.68824320943719538909369501826192141,
+0.959410728644647702377950152378611650E-1
119+1.68108070472517387190961730339600254,
+0.971057487407390411201725488177809241E-1
120+1.67394333092612499923191172923029435,
+0.982753868989717834844303967803275557E-1
121+1.66683029616166551228071720036477354,
+0.994500121703228172933039137854161328E-1
122+1.65974082285818255238478974741455696,
+0.100629650039782712328127609576129162
123+1.65267414708305594497707666627907205,
+0.101814326654490140522320621972065562
124+1.64562951790478234609999743506818443,
+0.103004068832514625466733060901486566
125+1.63860619677554773019120537388952815,
+0.104198904072112656528428960098709859
126+1.63160345693487354647153268346436116,
+0.105398860561465958979782511482284346
127+1.62462058283303477835405945586597541,
+0.106603967188911549935198869215607602
128+1.61765686957301553263788061976208745,
+0.107814253553674065499513686193278908
129+1.61071162236983005116054524904619362,
+0.109029749977111720145296612324748632
130+1.60378415602609453039306680521823957,
+0.110250487514488157810061008578271138
131+1.59687379442278817556308797881887318,
+0.111476497967283378462230486935475436
132+1.58997987002419079746111174786120956,
+0.112707813896057876934855393386708534
133+1.58310172339602924752110705805859091,
+0.113944468633885115777321981289805190
134+1.57623870273590632087665800297529131,
+0.115186496300368473953376646626857215
135+1.56939016341512365604283237095567589,
+0.116433931816259871778263682344311485
136+1.56255546753104482093062725422927363,
+0.117686810918698373049736317381864947
137+1.55573398346917637599103861956549232,
+0.118945170177088211568318678970235501
138+1.54892508547417340637527413333055785,
+0.120209047009636885032310150781360772
139+1.54212815322900195931807594565659976,
+0.121478479700575208713903649777558606
140+1.53534257144151413808270713021693530,
+0.122753507418082528688239173356532507
141+1.52856772943771240262819946144216718,
+0.124034170232941664267186768442998377
142+1.52180302076099800867922849863657041,
+0.125320509137949586535569901372920916
143+1.51504784277671456694719425573463479,
+0.126612566068111349659514010876108850
144+1.50830159628131149617142518378507388,
+0.127910383921646379432792471520964754
145+1.50156368511546373868817327368244819,
+0.129214006581837895215365859576747957
146+1.49483351578049355503589015931775431,
+0.130523478939758003270817270840923056
147+1.48811049705744755301310327122675876,
+0.131838846917902858239534927650542548
148+1.48139403962818736390226302894476397,
+0.133160157494774252287691074366070633
149+1.47468355569785557062886519652876966,
+0.134487458730446066069814161355648980
150+1.46797845861807962496250555101857231,
+0.135820799793156210330787895235534157
151+1.46127816251027555814163457290243138,
+0.137160230986967010673991854114446593
152+1.45458208188841027520247361489537085,
+0.138505803780539450342898439610712141
153+1.44788963128057610033896060320817905,
+0.139857570837069297157912765350925466
154+1.44120022484872396989648390546081929,
+0.141215586045435912189035654183361969
155+1.43451327600589220037319782134774423,
+0.142579904552617481390538701477587025
156+1.42782819703025602804692358026462642,
+0.143950582797429540314021584008091148
157+1.42114439867530904867832884004553400,
+0.145327678545646990255525094264574683
158+1.41446128977547119072909197576952681,
+0.146711250926573347052911625905291106
159+1.40777827684639882989072954411418901,
+0.148101360471124737782233265331001140
160+1.40109476367925097737246802739192878,
+0.149498069151500183758164830605819877
161+1.39441015092814101391081820904674288,
+0.150901440422514000012107606564276651
162+1.38772383568997604281645761015874000,
+0.152311539264670722976597120096621794
163+1.38103521107585542655702388604899503,
+0.153728432229067872471998597962422358
164+1.37434366577316625980933040502118300,
+0.155152187484217086331763054685730862
165+1.36764858359747620266273387874682608,
+0.156582874864879763414378129073938725
166+1.36094934303328301139652884428714566,
+0.158020565923019343095774015163019653
167+1.35424531676263499500784376607206133,
+0.159465333980978769091659649295558937
168+1.34753587118058719822630319191684298,
+0.160917254186998568094181273666041719
169+1.34082036589640403879774051436313874,
+0.162376403573198357993539454690214112
170+1.33409815321936004566795918172183772,
+0.163842861116152528813630294472766962
171+1.32736857762792585364443208021956947,
+0.165316707800199358376684187822216740
172+1.32063097522105626431636328188097705,
+0.166798026683631985045755192821871952
173+1.31388467315022048985473680895284097,
+0.168286902967929517543098016930008494
174+1.30712898903073111017813119550291522,
+0.169783424070197178160245257400787177
175+1.30036323033083719035192943965593420,
+0.171287679698995818105358886788417999
176+1.29358669373694775394560140635930047,
+0.172799761933753486486498659023686530
177+1.28679866449324364631666089651719942,
+0.174319765307965059246455246546117697
178+1.27999841571381792479730890791792283,
+0.175847786896400331371952020571991623
179+1.27318520766535636476406032372076417,
+0.177383926406556544373322976411406151
180+1.26635828701822945377531384884985245,
+0.178928286274608171283092549748417432
181+1.25951688606371422819055947200164669,
+0.180480971766125034830178787412733260
182+1.25266022189489722735447386561638809,
+0.182042091081849625639024292847696263
183+1.24578749554862729459666205536629076,
+0.183611755468845965529740751119222664
184+1.23889789110568737449397567270895163,
+0.185190079337355691907687938603429913
185+1.23199057474613609135459618398330096,
+0.186777180383722406901836668848789685
186+1.22506469375653078709685939198872131,
+0.188373179719772944131913560975705614
187+1.21811937548548165603649292623647055,
+0.189978202009074284878057268848586717
188+1.21115372624369918303592770168049403,
+0.191592375610517658429468812562799404
189+1.20416683014438151297258540922843181,
+0.193215832729717172651871738633649002
190+1.19715774787944155514995116994766683,
+0.194848709578749458096518050299059063
191+1.19012551542669206932047979568549013,
+0.196491146544803628100426175257282935
192+1.18306914268268676102992149751277432,
+0.198143288368357757303338740744073695
193+1.17598761201545209843794068703268774,
+0.199805284331549509895377775340098004
194+1.16887987673083313838407680221618950,
+0.201477288457465010601480272621186237
195+1.16174485944561144240767865873030335,
+0.203159459721132113428367115004471988
196+1.15458145035992774074066925250018029,
+0.204851962273072525723359017960643915
197+1.14738850542084905845875724358207927,
+0.206554965676342511391397805599266881
198+1.14016484436815124266444893793846313,
+0.208268645158074945659692042041697417
199+1.13290924865253375311589871589214153,
+0.209993181876627252316799052585710853
200+1.12562045921553339122747559385650750,
+0.211728763205541276296151308493989896
201+1.11829717411934498154669330934910698,
+0.213475583035633628019879947303927958
202+1.11093804601357572141756077925784904,
+0.215233842096659846410648766825208954
203+1.10354167942463971835070954684505245,
+0.217003748300134423613077654918982009
204+1.09610662785202143709493836541599134,
+0.218785517105043099072370007214575357
205+1.08863139065397982140399321344502816,
+0.220579371908355906900178024260990122
206+1.08111440970340383807753813675723441,
+0.222385544462441594762945169415386684
207+1.07355406579243628829268650046455576,
+0.224204275321698924941276382479365999
208+1.06594867476212250175428402653832133,
+0.226035814320961132564753113117134625
209+1.05829648333067508451396689622964579,
+0.227880421088500051269826182271994471
210+1.05059566459092990151427932907396199,
+0.229738365596760291802256320937473869
211+1.04284431314414897093998022902016364,
+0.231609928754296215469589885980076311
212+1.03504043983344087588786274603938101,
+0.233495403042770916853974440099008843
213+1.02718196603564577235063988793936402,
+0.235395093203313594481836509609421923
214+1.01926671746548424496253746752586927,
+0.237309316977027237519675921574483765
215+1.01129241743999573953048904119161998,
+0.239238405905001516168070540916910782
216+1.00325667954467297706383847690295228,
+0.241182706193826750302150947619295807
217+0.995156999635090923837912834290083799,
+0.243142579653336370820347935962210089
218+0.986990747099062472368807733566367723,
+0.245118404714142202924320107980890993
219+0.978755155294224603880824209605885949,
+0.247110577533486783260721039414118216
220+0.970447311064224450680967868251783851,
+0.249119513199040723215271175059742679
221+0.962064143223040583869351754884239000,
+0.251145647041545878684196026994747375
222+0.953602409881086036147944393710646946,
+0.253189436068676791163884011564958290
223+0.945058684468165463037907528952905452,
+0.255251360534199633721355034811644515
224+0.936429340286575141234349646203595494,
+0.257331925658493337610224432667231202
225+0.927710533402000123870677193352685174,
+0.259431663518814566212074318832185428
226+0.918898183649590612180034442455129809,
+0.261551135130401113878336401593219032
227+0.909987953496718494483529567690366580,
+0.263690932742695838070411741690697980
228+0.900975224461221833746547856386022859,
+0.265851682378732029260877257163356597
229+0.891855070732941566850586789359498648,
+0.268034046650170417793435080776528378
230+0.882622229585165554772936671621819385,
+0.270238727885765625479222906930855857
231+0.873271068088860754125762716220304264,
+0.272466471617349972495381721975295691
232+0.863795545553308854813178505394360638,
+0.274718070474985863152207934163143218
233+0.854189171008163807454180162989399104,
+0.276994368552045124993231875042116081
234+0.844444954909153918889582440732428571,
+0.279296266311992916126496729438627603
235+0.834555354086382178924726895193815695,
+0.281624726122054644081592741705012005
236+0.824512208752292130518310689451625822,
+0.283980778515329245279710753274268026
237+0.814306670135215230392694899997583155,
+0.286365529303059635938328101021065686
238+0.803929116989971220407539518038181495,
+0.288780167683694362995818015176624321
239+0.793369058840623296211094246674767659,
+0.291225975526402318340687192537257840
240+0.782615023307233120893558043746138323,
+0.293704338045591948359518681668325255
241+0.771654424224568084749572873233895398,
+0.296216756132081268041022602880704688
242+0.760473406430108029348112105521972518,
+0.298764860669019852359816171738518807
243+0.749056662017815292302576863549466866,
+0.301350429240767224099410447613497339
244+0.737387211434295591278302895320305406,
+0.303975405746574722328106158035369533
245+0.725446140909999639160421404681071701,
+0.306641923566284096197801960631070354
246+0.713212285190975958395437234225351400,
+0.309352333103853461802712328689370145
247+0.700661841106815072627797458756938969,
+0.312109234772742761743862339129657007
248+0.687767892795788534294858623414951669,
+0.314915518808718397997156048518493503
249+0.674499822837293822822291441953147501,
+0.317774413735206587646816278462680542
250+0.660822574244419738417074112845703024,
+0.320689545915737438541580666581786760
251+0.646695714894993817513389454402005337,
+0.323665013485929872609853214812546138
252+0.632072236386061170945000136838048409,
+0.326705479185682685503639905197287285
253+0.616896990007751449983468424580333684,
+0.329816288403562001297942710464242773
254+0.601104617755992621533900682881952269,
+0.333003621412417574590814956444079152
255+0.584616766106379321441587601292714165,
+0.336274692838645610198728629890296241
256+0.567338257053818748196811566000406618,
+0.339638017760732372141674530066184563
257+0.549151702327165120668100504067842453,
+0.343103774061966311836681659618112095
258+0.529909720661558116786810165407173123,
+0.346684307694080825876172229626686798
259+0.509423329602091814469823299066412422,
+0.350394856987006815154163453112784578
260+0.487443966139236039301073245095571196,
+0.354254625523424624005573055746854654
261+0.463634336790882217507922976793371502,
+0.358288435101351989902170775658332694
262+0.437518402207871681933515025173607280,
+0.362529398255472763687561092414814622
263+0.408389134611991145290558016416221589,
+0.367023508970343116977068094647372845
264+0.375121332878380591495093443929722987,
+0.371838172174307847618293715165674310
265+0.335737519214425235638195399148542308,
+0.377079825919318504715611620323180171
266+0.286174591792072510002201653739714122,
+0.382936353792390580381634933484297406
267+0.215241895984881699325976137068393403,
+0.389807180887844207493515693365586429
268+0.00000000000000000000000000000000000,
+0.398942280401432677939946059934381874
269reshape(zig(
1,
1 : nlayer
- 1)
* (zig(
2,
2 : nlayer)
- zig(
2,
1 : nlayer
- 1)), [nlayer
- 1,
1])
270+0.196625613931535296149607889707817318E-2
271+0.196625613931535296149607889707817243E-2
272+0.196625613931535296149607889707817092E-2
273+0.196625613931535296149607889707817581E-2
274+0.196625613931535296149607889707817054E-2
275+0.196625613931535296149607889707817844E-2
276+0.196625613931535296149607889707817431E-2
277+0.196625613931535296149607889707816866E-2
278+0.196625613931535296149607889707817393E-2
279+0.196625613931535296149607889707817732E-2
280+0.196625613931535296149607889707816678E-2
281+0.196625613931535296149607889707817017E-2
282+0.196625613931535296149607889707817619E-2
283+0.196625613931535296149607889707817543E-2
284+0.196625613931535296149607889707817920E-2
285+0.196625613931535296149607889707817243E-2
286+0.196625613931535296149607889707815061E-2
287+0.196625613931535296149607889707817619E-2
288+0.196625613931535296149607889707817243E-2
289+0.196625613931535296149607889707816866E-2
290+0.196625613931535296149607889707818108E-2
291+0.196625613931535296149607889707817167E-2
292+0.196625613931535296149607889707814798E-2
293+0.196625613931535296149607889707818446E-2
294+0.196625613931535296149607889707813631E-2
295+0.196625613931535296149607889707817543E-2
296+0.196625613931535296149607889707815437E-2
297+0.196625613931535296149607889707818258E-2
298+0.196625613931535296149607889707817243E-2
299+0.196625613931535296149607889707817431E-2
300+0.196625613931535296149607889707818446E-2
301+0.196625613931535296149607889707820365E-2
302+0.196625613931535296149607889707819236E-2
303+0.196625613931535296149607889707815287E-2
304+0.196625613931535296149607889707820854E-2
305+0.196625613931535296149607889707818634E-2
306+0.196625613931535296149607889707817393E-2
307+0.196625613931535296149607889707821042E-2
308+0.196625613931535296149607889707819537E-2
309+0.196625613931535296149607889707821418E-2
310+0.196625613931535296149607889707820929E-2
311+0.196625613931535296149607889707817355E-2
312+0.196625613931535296149607889707820477E-2
313+0.196625613931535296149607889707819199E-2
314+0.196625613931535296149607889707815061E-2
315+0.196625613931535296149607889707816528E-2
316+0.196625613931535296149607889707817468E-2
317+0.196625613931535296149607889707821945E-2
318+0.196625613931535296149607889707814459E-2
319+0.196625613931535296149607889707808967E-2
320+0.196625613931535296149607889707818484E-2
321+0.196625613931535296149607889707822208E-2
322+0.196625613931535296149607889707817543E-2
323+0.196625613931535296149607889707818484E-2
324+0.196625613931535296149607889707816415E-2
325+0.196625613931535296149607889707818446E-2
326+0.196625613931535296149607889707816189E-2
327+0.196625613931535296149607889707815888E-2
328+0.196625613931535296149607889707820327E-2
329+0.196625613931535296149607889707819236E-2
330+0.196625613931535296149607889707816641E-2
331+0.196625613931535296149607889707811074E-2
332+0.196625613931535296149607889707821456E-2
333+0.196625613931535296149607889707809306E-2
334+0.196625613931535296149607889707815512E-2
335+0.196625613931535296149607889707816076E-2
336+0.196625613931535296149607889707818221E-2
337+0.196625613931535296149607889707816189E-2
338+0.196625613931535296149607889707817957E-2
339+0.196625613931535296149607889707817807E-2
340+0.196625613931535296149607889707816641E-2
341+0.196625613931535296149607889707818973E-2
342+0.196625613931535296149607889707818785E-2
343+0.196625613931535296149607889707822245E-2
344+0.196625613931535296149607889707816227E-2
345+0.196625613931535296149607889707816340E-2
346+0.196625613931535296149607889707817882E-2
347+0.196625613931535296149607889707819161E-2
348+0.196625613931535296149607889707818070E-2
349+0.196625613931535296149607889707819951E-2
350+0.196625613931535296149607889707817769E-2
351+0.196625613931535296149607889707820440E-2
352+0.196625613931535296149607889707817280E-2
353+0.196625613931535296149607889707815136E-2
354+0.196625613931535296149607889707821418E-2
355+0.196625613931535296149607889707821267E-2
356+0.196625613931535296149607889707819274E-2
357+0.196625613931535296149607889707815550E-2
358+0.196625613931535296149607889707818032E-2
359+0.196625613931535296149607889707817619E-2
360+0.196625613931535296149607889707809494E-2
361+0.196625613931535296149607889707820177E-2
362+0.196625613931535296149607889707818070E-2
363+0.196625613931535296149607889707817732E-2
364+0.196625613931535296149607889707819274E-2
365+0.196625613931535296149607889707820778E-2
366+0.196625613931535296149607889707820365E-2
367+0.196625613931535296149607889707823073E-2
368+0.196625613931535296149607889707819951E-2
369+0.196625613931535296149607889707819763E-2
370+0.196625613931535296149607889707817017E-2
371+0.196625613931535296149607889707818935E-2
372+0.196625613931535296149607889707819499E-2
373+0.196625613931535296149607889707817130E-2
374+0.196625613931535296149607889707819236E-2
375+0.196625613931535296149607889707814835E-2
376+0.196625613931535296149607889707814685E-2
377+0.196625613931535296149607889707817393E-2
378+0.196625613931535296149607889707823148E-2
379+0.196625613931535296149607889707818484E-2
380+0.196625613931535296149607889707817882E-2
381+0.196625613931535296149607889707822509E-2
382+0.196625613931535296149607889707817243E-2
383+0.196625613931535296149607889707827512E-2
384+0.196625613931535296149607889707820139E-2
385+0.196625613931535296149607889707818333E-2
386+0.196625613931535296149607889707823449E-2
387+0.196625613931535296149607889707820214E-2
388+0.196625613931535296149607889707816039E-2
389+0.196625613931535296149607889707818221E-2
390+0.196625613931535296149607889707817882E-2
391+0.196625613931535296149607889707818521E-2
392+0.196625613931535296149607889707816716E-2
393+0.196625613931535296149607889707817017E-2
394+0.196625613931535296149607889707819838E-2
395+0.196625613931535296149607889707815023E-2
396+0.196625613931535296149607889707815287E-2
397+0.196625613931535296149607889707819725E-2
398+0.196625613931535296149607889707816453E-2
399+0.196625613931535296149607889707817243E-2
400+0.196625613931535296149607889707815776E-2
401+0.196625613931535296149607889707818935E-2
402+0.196625613931535296149607889707815776E-2
403+0.196625613931535296149607889707813970E-2
404+0.196625613931535296149607889707828114E-2
405+0.196625613931535296149607889707815587E-2
406+0.196625613931535296149607889707816227E-2
407+0.196625613931535296149607889707818935E-2
408+0.196625613931535296149607889707818521E-2
409+0.196625613931535296149607889707818785E-2
410+0.196625613931535296149607889707817769E-2
411+0.196625613931535296149607889707817920E-2
412+0.196625613931535296149607889707819650E-2
413+0.196625613931535296149607889707817844E-2
414+0.196625613931535296149607889707813443E-2
415+0.196625613931535296149607889707810509E-2
416+0.196625613931535296149607889707817769E-2
417+0.196625613931535296149607889707822170E-2
418+0.196625613931535296149607889707815399E-2
419+0.196625613931535296149607889707821192E-2
420+0.196625613931535296149607889707815926E-2
421+0.196625613931535296149607889707817694E-2
422+0.196625613931535296149607889707820064E-2
423+0.196625613931535296149607889707809494E-2
424+0.196625613931535296149607889707815926E-2
425+0.196625613931535296149607889707812766E-2
426+0.196625613931535296149607889707819838E-2
427+0.196625613931535296149607889707812954E-2
428+0.196625613931535296149607889707820026E-2
429+0.196625613931535296149607889707818484E-2
430+0.196625613931535296149607889707816415E-2
431+0.196625613931535296149607889707813782E-2
432+0.196625613931535296149607889707819650E-2
433+0.196625613931535296149607889707815813E-2
434+0.196625613931535296149607889707821568E-2
435+0.196625613931535296149607889707823901E-2
436+0.196625613931535296149607889707811074E-2
437+0.196625613931535296149607889707815851E-2
438+0.196625613931535296149607889707821380E-2
439+0.196625613931535296149607889707815174E-2
440+0.196625613931535296149607889707817732E-2
441+0.196625613931535296149607889707821719E-2
442+0.196625613931535296149607889707817844E-2
443+0.196625613931535296149607889707811149E-2
444+0.196625613931535296149607889707814572E-2
445+0.196625613931535296149607889707817882E-2
446+0.196625613931535296149607889707817844E-2
447+0.196625613931535296149607889707819537E-2
448+0.196625613931535296149607889707824314E-2
449+0.196625613931535296149607889707816189E-2
450+0.196625613931535296149607889707813142E-2
451+0.196625613931535296149607889707820252E-2
452+0.196625613931535296149607889707819311E-2
453+0.196625613931535296149607889707821343E-2
454+0.196625613931535296149607889707817882E-2
455+0.196625613931535296149607889707821004E-2
456+0.196625613931535296149607889707820139E-2
457+0.196625613931535296149607889707820553E-2
458+0.196625613931535296149607889707820252E-2
459+0.196625613931535296149607889707818296E-2
460+0.196625613931535296149607889707818521E-2
461+0.196625613931535296149607889707816829E-2
462+0.196625613931535296149607889707811450E-2
463+0.196625613931535296149607889707817355E-2
464+0.196625613931535296149607889707816340E-2
465+0.196625613931535296149607889707821568E-2
466+0.196625613931535296149607889707813180E-2
467+0.196625613931535296149607889707820252E-2
468+0.196625613931535296149607889707820365E-2
469+0.196625613931535296149607889707817205E-2
470+0.196625613931535296149607889707817506E-2
471+0.196625613931535296149607889707815136E-2
472+0.196625613931535296149607889707817393E-2
473+0.196625613931535296149607889707814647E-2
474+0.196625613931535296149607889707817054E-2
475+0.196625613931535296149607889707818108E-2
476+0.196625613931535296149607889707817205E-2
477+0.196625613931535296149607889707817543E-2
478+0.196625613931535296149607889707818183E-2
479+0.196625613931535296149607889707815776E-2
480+0.196625613931535296149607889707818747E-2
481+0.196625613931535296149607889707815587E-2
482+0.196625613931535296149607889707818484E-2
483+0.196625613931535296149607889707817205E-2
484+0.196625613931535296149607889707823712E-2
485+0.196625613931535296149607889707820741E-2
486+0.196625613931535296149607889707819048E-2
487+0.196625613931535296149607889707821681E-2
488+0.196625613931535296149607889707818333E-2
489+0.196625613931535296149607889707813707E-2
490+0.196625613931535296149607889707818822E-2
491+0.196625613931535296149607889707815888E-2
492+0.196625613931535296149607889707817844E-2
493+0.196625613931535296149607889707815776E-2
494+0.196625613931535296149607889707821568E-2
495+0.196625613931535296149607889707818296E-2
496+0.196625613931535296149607889707817656E-2
497+0.196625613931535296149607889707818634E-2
498+0.196625613931535296149607889707818785E-2
499+0.196625613931535296149607889707816641E-2
500+0.196625613931535296149607889707816641E-2
501+0.196625613931535296149607889707819123E-2
502+0.196625613931535296149607889707818145E-2
503+0.196625613931535296149607889707815587E-2
504+0.196625613931535296149607889707821267E-2
505+0.196625613931535296149607889707818258E-2
506+0.196625613931535296149607889707818935E-2
507+0.196625613931535296149607889707817769E-2
508+0.196625613931535296149607889707818446E-2
509+0.196625613931535296149607889707816829E-2
510+0.196625613931535296149607889707820967E-2
511+0.196625613931535296149607889707816979E-2
512+0.196625613931535296149607889707818521E-2
513+0.196625613931535296149607889707817092E-2
514+0.196625613931535296149607889707813932E-2
515+0.196625613931535296149607889707813970E-2
516+0.196625613931535296149607889707816415E-2
517+0.196625613931535296149607889707816340E-2
518+0.196625613931535296149607889707817769E-2
519+0.196625613931535296149607889707818258E-2
520+0.196625613931535296149607889707818032E-2
521+0.196625613931535296149607889707817054E-2
522+0.196625613931535296149607889707817506E-2
523+0.196625613931535296149607889707817355E-2
524+0.196625613931535296149607889707873629E-2
Postprocessing of the example output ⛓
3import matplotlib.pyplot
as plt
14 pattern =
"*." + kind +
".txt"
15 fileList = glob.glob(pattern)
19 df = pd.read_csv(file, delimiter =
",", header =
None)
22 fig = plt.figure(figsize = (8, 8))
24 plt.rcParams.update({
'font.size': fontsize - 2})
27 ax.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
28 ax.tick_params(axis =
"y", which =
"minor")
29 ax.tick_params(axis =
"x", which =
"minor")
32 ax.plot ( df.values[:, 0]
37 ax.scatter ( df.values[:, 0]
44 ax.set_xlabel(
"X", fontsize = 17)
45 ax.set_ylabel(
"Y", fontsize = 17)
47 plt.savefig(file.replace(
".txt",
".png"))
Visualization of the example output ⛓
- Test:
- test_pm_distNorm
Final Remarks ⛓
If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.
-
If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
-
If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.
This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.
- Copyright
- Computational Data Science Lab
- Author:
- Amir Shahmoradi, April 25, 2015, 2:21 PM, National Institute for Fusion Studies, The University of Texas Austin
Definition at line 3294 of file pm_distNorm.F90.