Generate and return the unnormalized cumulative distribution function (UCDF) of the Band spectral model/distribution.
See the documentation of pm_distBand for more information on the Band distribution.
The UCDF of the Band model is the integral of its UDF over a range \((\ms{lb}, \ms{ub})\) written as,
\begin{equation}
\large
\ms{UCDF}_\ms{BAND} = \int_{\ms{lb}}^{\ms{ub}} f_{\ms{BAND}}(E | \alpha, \beta, \ebreak) dE ~.
\end{equation}
where \(f_{\ms{BAND}}\) is the UDF of the Band distribution.
While the integration domain should be ideally \([0, +\infty)\), the arbitrary values of \(\alpha\) and \(\beta\) require finite bounds for the integral to be specified by user to ensure convergence.
- Parameters
-
[out] | ucdf | : The output scalar or array of the same shape as any input array-like argument, of type real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128) as the input argument ucdf , containing the distribution UCDF.
|
[in] | lb | : The input positive scalar or array of the same shape as any input array-like argument, of the same type and kind as the input argument ucdf , representing the lower bound of the Band distribution.
|
[in] | ub | : The input positive scalar or array of the same shape as any input array-like argument, of the same type and kind as the input argument ucdf , representing the upper bound of the Band distribution.
|
[in] | alpha | : The input scalar or array of the same shape as other array-like arguments of the same type and kind as ucdf , containing the first shape parameter of the distribution.
|
[in] | beta | : The input scalar or array of the same shape as other array-like arguments of the same type and kind as ucdf , containing the second shape parameter of the distribution.
|
[in] | ebreak | : The input scalar or array of the same shape as other array-like arguments of the same type and kind as ucdf , containing the normalized spectral break energy values: \(\ebreak = \frac{\ebreak}{100\kev}\).
|
[out] | info | : The output scalar of type integer of default kind IK.
On output, it is set to positive the number of iterations taken for the series representation of the Gamma function to converge.
If the algorithm fails to converge, then info is set to the negative of the number of iterations taken by the algorithm or, to the output error returned by brute force integrator getQuadErr.
An negative output value signifies the lack of convergence and failure to compute the UCDF.
This is likely to happen if the input value for alpha or beta are too extreme.
|
Possible calling interfaces ⛓
call setBandUCDF(ucdf, lb, ub, alpha, beta, ebreak, info)
Generate and return the unnormalized cumulative distribution function (UCDF) of the Band spectral mod...
This module contains procedures and generic interfaces for computing the Band photon distribution wid...
- Warning
- The condition
0 < lb
must hold for the corresponding input arguments.
The condition 0 < ub
must hold for the corresponding input arguments.
The condition alpha /= -2
must hold for the corresponding input arguments.
The condition 0 < ebreak
must hold for the corresponding input arguments.
The condition 0 < invEfold
must hold for the corresponding input arguments.
The condition beta < alpha
must hold for the corresponding input arguments.
The condition ebreak = (alpha - beta) * invEfold
must hold for the corresponding input arguments.
The condition zeta = getZeta(alpha, beta, ebreak)
must hold for the corresponding input arguments.
These conditions are verified only if the library is built with the preprocessor macro CHECK_ENABLED=1
.
- Note
- The normalization (and the physical units) of the input
energy
is irrelevant as long as the input values ebreak
and zeta
are computed in the same physical dimensions and with the same normalizations.
- See also
- getBandUDF
setBandUCDF
setBandMean
getBandZeta
getBandEpeak
getBandEbreak
setBandPhoton
setBandEnergy
Example usage ⛓
11 integer(IK) :: info(
4)
12 type(display_type) :: disp
16 call disp%show(
"call setBandUCDF(ucdf(1), lb = .01_RKG, ub = 10._RKG, alpha = +2._RKG, beta = -3._RKG, ebreak = 1._RKG, info = info(1))")
17 call setBandUCDF(ucdf(
1), lb
= .
01_RKG, ub
= 10._RKG, alpha
= +2._RKG, beta
= -3._RKG, ebreak
= 1._RKG, info
= info(
1))
18 call disp%show(
"if (info(1) < 0) error stop")
19 if (info(
1)
< 0)
error stop
31 integer(IK) ,
parameter :: NP
= 1000_IK
32 real(RKG) :: ucdf(
4), ub(NP)
33 integer :: fileUnit, i
36 open(newunit
= fileUnit, file
= "setBandUCDF.RK.txt")
38 call setBandUCDF(ucdf,
0.01_RKG, ub(i), [.
5_RKG,
1.5_RKG,
-.
5_RKG,
-1.1_RKG],
-[.
5_RKG,
1._RKG,
2._RKG,
3._RKG], [.
5_RKG,
1.0_RKG,
2.0_RKG,
5._RKG], info
= info)
39 if (
any(info
< 0))
error stop
40 write(fileUnit,
"(*(g0,:,' '))") ub(i), ucdf
Return the linSpace output argument with size(linSpace) elements of evenly-spaced values over the int...
This is a generic method of the derived type display_type with pass attribute.
This is a generic method of the derived type display_type with pass attribute.
This module contains procedures and generic interfaces for generating arrays with linear or logarithm...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
integer, parameter RKH
The scalar integer constant of intrinsic default kind, representing the highest-precision real kind t...
Generate and return an object of type display_type.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example output ⛓
2call setBandUCDF(ucdf(
1), lb
= .
01_RKG, ub
= 10._RKG, alpha
= +2._RKG, beta
= -3._RKG, ebreak
= 1._RKG, info
= info(
1))
3if (info(
1)
< 0)
error stop
5+0.173405303729200175851483190089853506E-1
Postprocessing of the example output ⛓
3import matplotlib.pyplot
as plt
12label = [
r"$\alpha, \beta = +0.5, -0.5, x_b = 0.5, \mathrm{lb} = .01$"
13 ,
r"$\alpha, \beta = +1.5, -1.0, x_b = 1.5, \mathrm{lb} = .01$"
14 ,
r"$\alpha, \beta = -0.5, -2.0, x_b = 2.0, \mathrm{lb} = .01$"
15 ,
r"$\alpha, \beta = -1.1, -3.0, x_b = 5.0, \mathrm{lb} = .01$"
18pattern =
"*." + kind +
".txt"
19fileList = glob.glob(pattern)
22 df = pd.read_csv(fileList[0], delimiter =
" ")
24 fig = plt.figure(figsize = 1.25 * np.array([6.4, 4.8]), dpi = 200)
27 for i
in range(1,len(df.values[0,:]+1)):
29 plt.plot( df.values[:, 0]
30 , df.values[:,i] / df.values[-1,i]
34 plt.xticks(fontsize = fontsize - 2)
35 plt.yticks(fontsize = fontsize - 2)
36 ax.set_xlabel(
r"$\mathrm{ub}$", fontsize = fontsize)
37 ax.set_ylabel(
"Normalized Band UCDF", fontsize = fontsize)
39 plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
40 ax.tick_params(axis =
"y", which =
"minor")
41 ax.tick_params(axis =
"x", which =
"minor")
49 plt.savefig(fileList[0].replace(
".txt",
".png"))
53 sys.exit(
"Ambiguous file list exists.")
Visualization of the example output ⛓
- Test:
- test_pm_distBand
Final Remarks ⛓
If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.
-
If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
-
If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.
This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.
- Copyright
- Computational Data Science Lab
- Author:
- Amir Shahmoradi, Oct 16, 2009, 11:14 AM, Michigan
Definition at line 815 of file pm_distBand.F90.