Loading [MathJax]/extensions/tex2jax.js
ParaMonte MATLAB 3.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation.
Toggle main menu visibility
Main Page
Related Pages
Data Structures
Data Structures
Data Structure Index
Class Hierarchy
Data Fields
All
a
b
c
d
e
f
g
h
i
l
m
n
o
p
r
s
t
u
v
w
z
Functions
a
c
d
f
g
h
i
m
n
p
r
s
t
u
w
Variables
b
c
d
e
f
g
i
l
m
n
o
p
r
s
t
u
v
w
z
Files
File List
Globals
All
a
b
c
d
e
f
g
h
i
k
l
m
n
o
p
q
r
s
t
u
v
w
x
Functions
a
b
c
d
e
f
g
h
i
k
l
m
n
o
p
q
r
s
t
u
v
w
x
Variables
GitHub
C
latest
2
C++
latest
2
Fortran
latest
2
Generic
latest
2
1
MATLAB
latest
3
•
All
Data Structures
Files
Functions
Variables
Pages
getLogUDF.m
Go to the documentation of this file.
1
%> \brief
2
%> Return the natural logarithm of the Unnormalized Density Function (UDF)
3
%> of the inverse of the 2-dimensional modified Himmelblau function.<br>
4
%>
5
%> \details
6
%> Himmelblau
's function is a multi-modal function, used to test
7
%> the performance of optimization algorithms. The function is defined by:<br>
8
%> \f{equation}
9
%> H(x, y) = (x^{2} + y - 11)^{2} + (x + y^{2} - 7)^{2} ~.
10
%> \f}
11
%>
12
%> It has one local maximum at \f$x = -0.270845\f$ and \f$y = -0.923039\f$ where \f$H(x, y) = 181.617\f$,
13
%> and four identical local minima:<br>
14
%> \f{eqnarray}
15
%> H(3.0,2.0) &=& 0.0 ~,\\
16
%> H(-2.805118, 3.131312) &=& 0.0 ~,\\
17
%> H(-3.779310, -3.283186) &=& 0.0 ~,\\
18
%> H(3.584428, -1.848126) &=& 0.0 ~.
19
%> \f}
20
%>
21
%> The function is named after David Mautner Himmelblau (1924–2011), who introduced it.<br>
22
%> The locations of all the minima can be found analytically.<br>
23
%>
24
%> This MATLAB function returns a modification of the Himmelblau function as a density
25
%> function suitable for testing sampling algorithms (or stochastic maximizers):<br>
26
%> \f{equation}
27
%> f(x, y, \epsilon) = \frac{1}{H(x, y) + \epsilon} ~.
28
%> \f}
29
%> where \f$\epsilon\f$ is an arbitrary positive real number
30
%> which determines the sharpness of the function four peaks.<br>
31
%>
32
%> \param[in] x : The input scalar or array of the same rank and shape as
33
%> other input array-like arguments of type MATLAB ``double``,
34
%> representing the x-component of the state within the domain
35
%> of Himmelblau density at which the density value must be computed.<br>
36
%> \param[in] y : The input scalar or array of the same rank and shape as
37
%> other input array-like arguments of type MATLAB ``double``,
38
%> representing the y-component of the state within the domain
39
%> of Himmelblau density at which the density value must be computed.<br>
40
%> \param[in] epsilon : The input positive scalar or array of the same rank and shape as
41
%> other array-like input arguments of type MATLAB ``double``,
42
%> representing the value to be added to the inverse
43
%> of the Himmelblau function.<br>
44
%> Increasingly smaller values of ``epsilon`` will yield pointier densities.<br>
45
%> Increasingly larger values of ``epsilon`` will yield flatter densities.<br>
46
%> (**optional**, default = ``1``)
47
%>
48
%> \return
49
%> ``logUDF`` : The output Unnormalized Density Function (UDF) of the
50
%> Himmelblau density at the specified input ``state``.<br>
51
%>
52
%> \interface{getLogUDF}
53
%> \code{.m}
54
%>
55
%> logUDF = pm.stats.dist.himmelblau.getLogUDF(x, y);
56
%> logUDF = pm.stats.dist.himmelblau.getLogUDF(x, y, epsilon);
57
%>
58
%> \endcode
59
%>
60
%> \see
61
%> [pm.math.func.himmelblau.getFunc](@ref getFunc)<br>
62
%> [pm.stats.dist.himmelblau.getLogUDF](@ref getLogUDF)<br>
63
%> [pm.sampling.Paradram](@ref Paradram)<br>
64
%>
65
%> \example{getLogUDF}
66
%> \include{lineno} example/stats/dist/himmelblau/getLogUDF/main.m
67
%> \vis{getLogUDF}
68
%> \image html example/stats/dist/himmelblau/getLogUDF/himmelblau.getLogUDF.2d.png width=700
69
%> \image html example/stats/dist/himmelblau/getLogUDF/himmelblau.getLogUDF.3d.png width=700
70
%>
71
%> \final{getLogUDF}
72
%>
73
%> \author
74
%> \AmirShahmoradi, May 16 2016, 9:03 AM, Oden Institute for Computational Engineering and Sciences (ICES), UT Austin<br>
75
function logFunc = getLogUDF(x, y, epsilon)
76
if nargin < 3
77
epsilon = 1;
78
end
79
logFunc = -log(pm.math.func.himmelblau.getFunc(x, y) + epsilon);
80
%if false
81
% nsim = 100000;
82
% for i = 1 : nsim
83
% logFunc = logFunc - log((x^2 + y - 11)^2 + (x + y^2 - 7)^2 + 0.1);
84
% end
85
% logFunc = logFunc / (nsim + 1);
86
%end
87
end
getLogUDF
function getLogUDF(in x, in y, in epsilon)
Return the natural logarithm of the Unnormalized Density Function (UDF) of the inverse of the 2-dimen...
src
matlab
main
+pm
+stats
+dist
+himmelblau
getLogUDF.m
Generated on Tue Dec 24 2024 15:18:40 for ParaMonte MATLAB 3.0.0 by
1.9.3