2%> Return a (set of) multivariate Normal random vector(s).<br>
5%> This RNG function can be potentially faster than the intrinsic MATLAB equivalent
6%> because it uses the Cholesky factorization of the distribution covariance matrix.<br>
8%> \param[in] mean : The input vector of MATLAB ``real``,
9%> representing the mean of a Multivariate Normal
10%> distribution in ``size(mean)`` dimensional space.<br>
11%> (**optional**.
default = ``[]``. It must be present
if ``cholow`` is missing.)
12%> \param[in] cholow : The input square matrix of MATLAB ``real``,
13%> representing the lower-triangle of the Cholesky
14%> factorization of the covariance matrix of the target
15%> Multivariate Normal distribution in ``numel(mean)`` dimensional space.<br>
16%> This argument can be obtained by passing the covariance matrix ``covmat``
17%> of the distribution to the MATLAB intrinsic function ``chol(covmat,
"lower")``.<br>
18%> (**optional**.
default = ``[]``. It must be present
if ``mean`` is missing.)
19%> \param[in] s1 : The input scalar MATLAB whole-number,
20%> representing the number of random vectors to generate.<br>
21%> (**optional**.
default = ``1``)
24%> ``rand`` : The output vector of MATLAB ``real`` of
25%> shape ``(numel(mean), 1)`` containing a random vector
26%> from the specified Multivariate Normal distribution.<br>
31%> rand = pm.stats.dist.mvn.getRand(mean)
32%> rand = pm.stats.dist.mvn.getRand([], cholow)
33%> rand = pm.stats.dist.mvn.getRand(mean, cholow)
34%> rand = pm.stats.dist.mvn.getRand([], cholow, s1)
35%> rand = pm.stats.dist.mvn.getRand(mean, cholow, s1)
40%> \include{lineno} example/stats/dist/mvn/
getRand/main.m
42%> \image html example/stats/dist/mvn/
getRand/mvn.getRand.hist1.png width=700
43%> \image html example/stats/dist/mvn/
getRand/mvn.getRand.hist2.png width=700
44%> \image html example/stats/dist/mvn/
getRand/mvn.getRand.scatter1.png width=700
49%> \JoshuaOsborne, May 21 2024, 12:06 AM, University of Texas at Arlington<br>
50%> \FatemehBagheri, May 20 2024, 1:25 PM, NASA Goddard Space Flight Center (GSFC), Washington, D.C.<br>
51%> \AmirShahmoradi, May 16 2016, 9:03 AM, Oden Institute
for Computational Engineering and Sciences (ICES), UT Austin<br>
59 rand = randn(size(cholow, 1), s1);
61 rand(:, irand) = cholow * rand(:, irand);
64 rand = cholow * randn(size(cholow, 1), s1);
67 rand = randn(numel(mean), s1);
70 rand = randn(numel(mean), s1);
73 rand = bsxfun(@plus, mean(:), rand);
function getRand(in ndim, in scale)
Generate and return a random positive-definite (correlation or covariance) matrix using the Gram meth...