ParaMonte Fortran 2.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation.
pm_ellipsoid::setVolUnitBall Interface Reference

Return the volume of an \(\ndim\)-dimensional ball of unit-radius. More...

Detailed Description

Return the volume of an \(\ndim\)-dimensional ball of unit-radius.

The computation of the volume of an n-ball requires involves factorials which are computed in the procedures of this generic interface iteratively.
This generic subroutine interface is an exact functional-interface replacement for the generic functional interface getVolUnitBall.

Parameters
[out]volUnitBall: The output scalar (or array of the same rank as other input array-like arguments) of,
  1. type real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128),
containing natural logarithm of the volume of the unit-radius hyper-ball.
[in]ndim: The input scalar containing the number of dimensions of the unit-radius hyper-ball.
It can be,
  1. of type integer of default kind IK.


Possible calling interfaces

call setVolUnitBall(volUnitBall, ndim)
Return the volume of an -dimensional ball of unit-radius.
This module contains classes and procedures for setting up and computing the properties of the hyper-...
Warning
The condition 0 <= ndim must hold for the corresponding input arguments.
This condition is verified only if the library is built with the preprocessor macro CHECK_ENABLED=1.
The pure procedure(s) documented herein become impure when the ParaMonte library is compiled with preprocessor macro CHECK_ENABLED=1.
By default, these procedures are pure in release build and impure in debug and testing builds.
Remarks
The procedures under discussion are elemental.
See also
getLogVolUnitBall
Volume of an n-ball
Particular values of the Gamma function


Example usage

1program example
2
3 use pm_kind, only: SK, IK, LK, RKG => RKH
5 use pm_io, only: display_type
6
7 implicit none
8
9 real(RKG) :: volUnitBall(5)
10
11 type(display_type) :: disp
12 disp = display_type(file = "main.out.F90")
13
14 call disp%skip()
15 call disp%show("call setVolUnitBall(volUnitBall(1), ndim = 2_IK)")
16 call setVolUnitBall(volUnitBall(1), ndim = 2_IK)
17 call disp%show("volUnitBall(1)")
18 call disp%show( volUnitBall(1) )
19 call disp%skip()
20
21 call disp%skip()
22 call disp%show("call setVolUnitBall(volUnitBall(1:5), ndim = [integer(IK) :: 0, 1, 2, 3, 4])")
23 call setVolUnitBall(volUnitBall(1:5), ndim = [integer(IK) :: 0, 1, 2, 3, 4])
24 call disp%show("volUnitBall(1:5)")
25 call disp%show( volUnitBall(1:5) )
26 call disp%skip()
27
28 !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 ! Output an example array for visualization.
30 !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31
32 block
33 use pm_kind, only: RKD
34 use pm_arrayRange, only: getRange
35 integer(IK), parameter :: nsim = 30_IK
36 integer(IK) :: ndim(0 : nsim)
37 real(RKD) :: volUnitBall(0 : nsim)
38 integer(IK) :: fileUnit, i
39 open(newunit = fileUnit, file = "setVolUnitBall.RK.txt")
40 ndim(0 : nsim) = getRange(0_IK, nsim)
41 call setVolUnitBall(volUnitBall, ndim)
42 do i = 0, nsim
43 write(fileUnit, "(*(g0,:,','))") ndim(i), volUnitBall(i)
44 end do
45 close(fileUnit)
46 end block
47
48end program example
Generate minimally-spaced character, integer, real sequences or sequences at fixed intervals of size ...
This is a generic method of the derived type display_type with pass attribute.
Definition: pm_io.F90:11726
This is a generic method of the derived type display_type with pass attribute.
Definition: pm_io.F90:11508
This module contains procedures and generic interfaces for generating ranges of discrete character,...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
Definition: pm_io.F90:252
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
Definition: pm_io.F90:11393
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
Definition: pm_kind.F90:268
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
Definition: pm_kind.F90:541
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
Definition: pm_kind.F90:540
integer, parameter RKD
The double precision real kind in Fortran mode. On most platforms, this is an 64-bit real kind.
Definition: pm_kind.F90:568
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
Definition: pm_kind.F90:539
integer, parameter RKH
The scalar integer constant of intrinsic default kind, representing the highest-precision real kind t...
Definition: pm_kind.F90:858
Generate and return an object of type display_type.
Definition: pm_io.F90:10282

Example Unix compile command via Intel ifort compiler
1#!/usr/bin/env sh
2rm main.exe
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Example Windows Batch compile command via Intel ifort compiler
1del main.exe
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
4main.exe

Example Unix / MinGW compile command via GNU gfortran compiler
1#!/usr/bin/env sh
2rm main.exe
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Example output
1
2call setVolUnitBall(volUnitBall(1), ndim = 2_IK)
3volUnitBall(1)
4+3.14159265358979323846264338327950280
5
6
7call setVolUnitBall(volUnitBall(1:5), ndim = [integer(IK) :: 0, 1, 2, 3, 4])
8volUnitBall(1:5)
9+1.00000000000000000000000000000000000, +2.00000000000000000000000000000000000, +3.14159265358979323846264338327950280, +4.18879020478639098461685784437267065, +4.93480220054467930941724549993807541
10
11

Postprocessing of the example output
1#!/usr/bin/env python
2
3import matplotlib.pyplot as plt
4import pandas as pd
5import numpy as np
6import glob
7import sys
8
9linewidth = 2
10fontsize = 17
11
12for kind in ["RK"]:
13
14 pattern = "*." + kind + ".txt"
15 fileList = glob.glob(pattern)
16
17 for file in fileList:
18
19 df = pd.read_csv(file, delimiter = ",", header = None)
20
21 # definitions for the axes
22 #left, width = 0.1, 0.65
23 #bottom, height = 0.1, 0.65
24 #spacing = 0.015
25
26 # start with a square Figure
27 fig = plt.figure() # figsize = (8, 6)
28
29 plt.rcParams.update({'font.size': fontsize - 2})
30 ax = plt.subplot()
31 #ax = fig.add_axes([left, bottom, width, height]) # scatter plot
32 #ax_histx = fig.add_axes([left, bottom + height + spacing, width, 0.2], sharex = ax) # histx
33 #ax_histy = fig.add_axes([left + width + spacing, bottom, 0.2, height], sharey = ax) # histy
34 #
35 #for axes in [ax, ax_histx, ax_histy]:
36 # axes.grid(visible = True, which = "both", axis = "both", color = "0.85", linestyle = "-")
37 # axes.tick_params(axis = "y", which = "minor")
38 # axes.tick_params(axis = "x", which = "minor")
39 #
40
43
44 # the scatter plot:
45 for i in range(0, len(df.values[0,:]), 2):
46 ax.scatter ( df.values[:,i]
47 , df.values[:,i+1]
48 , s = 8
49 , zorder = 1000
50 )
51
52 #ax_histx.hist(df.values[:, 0], bins = 50, zorder = 1000)
53 #ax_histy.hist(df.values[:,1], bins = 50, orientation = "horizontal", zorder= 1000)
54
55 #ax.set_aspect("equal")
56 ax.set_xlim([0, df.values[-1,:].max()])
57 ax.set_xlabel("ndim", fontsize = 17)
58 ax.set_ylabel("Volume of ndim unit-ball", fontsize = 17)
59 plt.grid(visible = True, which = "both", axis = "both", color = "0.85", linestyle = "-")
60 plt.minorticks_on()
61
62 plt.tight_layout()
63 plt.savefig(file.replace(".txt",".png"))

Visualization of the example output
Test:
test_pm_ellipsoid


Final Remarks


If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.

  1. If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
  2. If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.

This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.

Author:
Amir Shahmoradi, April 23, 2017, 1:36 AM, Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin

Definition at line 291 of file pm_ellipsoid.F90.


The documentation for this interface was generated from the following file: