This module contains procedures and generic interfaces for remapping arrays of various types.
More...
This module contains procedures and generic interfaces for remapping arrays of various types.
- Benchmarks:
Benchmark :: The runtime performance of setRemapped vs. direct remapping ⛓
4 use iso_fortran_env,
only:
error_unit
12 integer(IK) :: fileUnit
13 integer(IK) ,
parameter :: NSIZE
= 15_IK
14 integer(IK) ,
parameter :: NBENCH
= 3_IK
15 integer(IK) :: arraySize(NSIZE)
16 real(RK) :: dummy
= 0._RK
17 real(RK) ,
allocatable :: array(:)
18 integer(IK) ,
allocatable ::
index(:)
19 type(bench_type) :: bench(NBENCH)
21 bench(
1)
= bench_type(name
= SK_
"setRemapped", exec
= setRemapped, overhead
= setOverhead)
22 bench(
2)
= bench_type(name
= SK_
"getRemapped", exec
= getRemapped, overhead
= setOverhead)
23 bench(
3)
= bench_type(name
= SK_
"direct", exec
= direct , overhead
= setOverhead)
25 arraySize
= [(
2_IK**isize, isize
= 1_IK, NSIZE )]
27 write(
*,
"(*(g0,:,' '))")
28 write(
*,
"(*(g0,:,' '))")
"setRemapped() vs. getRemapped() vs. direct()"
29 write(
*,
"(*(g0,:,' '))")
31 open(newunit
= fileUnit, file
= "main.out", status
= "replace")
33 write(fileUnit,
"(*(g0,:,','))")
"arraySize", (bench(i)
%name, i
= 1, NBENCH)
35 loopOverArraySize:
do isize
= 1, NSIZE
37 write(
*,
"(*(g0,:,' '))")
"Benchmarking with size", arraySize(isize)
39 index
= [( i, i
= 1, arraySize(isize) )]
40 allocate(array(arraySize(isize)))
41 call random_number(array)
44 bench(i)
%timing
= bench(i)
%getTiming(minsec
= 0.07_RK)
48 write(fileUnit,
"(*(g0,:,','))") arraySize(isize), (bench(i)
%timing
%mean, i
= 1, NBENCH)
50 end do loopOverArraySize
51 write(
*,
"(*(g0,:,' '))") dummy
52 write(
*,
"(*(g0,:,' '))")
62 subroutine setOverhead()
67 dummy
= dummy
+ array(
1)
70 subroutine setRemapped()
78 subroutine getRemapped()
87 array
= array(
index(arraySize(isize):
1:
-1))
Generate a copy of the input array whose elements are reordered according to the input index array su...
Reorder the elements of the input array according to the input index array, such that   array = ar...
Perform an unbiased random shuffling of the input array, known as the Knuth or Fisher-Yates shuffle.
Generate and return an object of type timing_type containing the benchmark timing information and sta...
This module contains procedures and generic interfaces for remapping arrays of various types.
This module contains procedures and generic interfaces for shuffling arrays of various types.
This module contains abstract interfaces and types that facilitate benchmarking of different procedur...
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter RK
The default real kind in the ParaMonte library: real64 in Fortran, c_double in C-Fortran Interoperati...
integer, parameter LK
The default logical kind in the ParaMonte library: kind(.true.) in Fortran, kind(....
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
This is the class for creating benchmark and performance-profiling objects.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Postprocessing of the benchmark output ⛓
3import matplotlib.pyplot
as plt
9methods = [
"setRemapped",
"getRemapped",
"direct"]
11df = pd.read_csv(
"main.out")
17ax = plt.figure(figsize = 1.25 * np.array([6.4,4.6]), dpi = 200)
21 plt.plot( df[
"arraySize"].values
26plt.xticks(fontsize = fontsize)
27plt.yticks(fontsize = fontsize)
28ax.set_xlabel(
"Array Size", fontsize = fontsize)
29ax.set_ylabel(
"Runtime [ seconds ]", fontsize = fontsize)
30ax.set_title(
"setRemapped() vs. getRemapped() vs. direct method.\nLower is better.", fontsize = fontsize)
34plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
35ax.tick_params(axis =
"y", which =
"minor")
36ax.tick_params(axis =
"x", which =
"minor")
44plt.savefig(
"benchmark.setRemapped_getRemapped_direct.runtime.png")
50ax = plt.figure(figsize = 1.25 * np.array([6.4,4.6]), dpi = 200)
53plt.plot( df[
"arraySize"].values
54 , np.ones(len(df[
"arraySize"].values))
58plt.plot( df[
"arraySize"].values
59 , df[
"getRemapped"].values / df[
"setRemapped"].values
62plt.plot( df[
"arraySize"].values
63 , df[
"direct"].values / df[
"setRemapped"].values
67plt.xticks(fontsize = fontsize)
68plt.yticks(fontsize = fontsize)
69ax.set_xlabel(
"Array Size", fontsize = fontsize)
70ax.set_ylabel(
"Runtime compared to setRemapped()", fontsize = fontsize)
71ax.set_title(
"direct vs. getRemapped() to setRemapped() Runtime Ratio.\nLower means faster. Lower than 1 means faster than setRemapped().", fontsize = fontsize)
75plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
76ax.tick_params(axis =
"y", which =
"minor")
77ax.tick_params(axis =
"x", which =
"minor")
78ax.legend ( [
"setRemapped()",
"getRemapped()",
"Direct Method"]
85plt.savefig(
"benchmark.setRemapped_getRemapped_direct.runtime.ratio.png")
Visualization of the benchmark output ⛓
Benchmark moral ⛓
- The procedures under the generic interface setRemapped tend to be significantly faster than directly remapping arrays. This likely only true for remapping of allocatable arrays.
The primary reason for the better performance of setRemapped is that setRemapped avoids a final data copy from a dummy array to the original array by copying the allocation descriptor instead of the whole remapped array to the original array.
- Note that the observed performance benefit slightly diminishes if the remapping is not in
action =
reverse mode.
- The other benefit of setRemapped is that it provides a unified seamless generic interface for reversing all intrinsic types and kinds of arrays as well as assumed-length and assumed-shape characters.
- Test:
- test_pm_arrayRemap
Final Remarks ⛓
If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.
-
If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
-
If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.
This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.
- Copyright
- Computational Data Science Lab
- Author:
- Fatemeh Bagheri, Wednesday 12:20 AM, October 13, 2021, Dallas, TX