ParaMonte Fortran 2.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation.
pm_polynomial::getPolyStr Interface Reference

Generate and return a string containing the polynomial expression corresponding to the input polynomial coefficients. More...

Detailed Description

Generate and return a string containing the polynomial expression corresponding to the input polynomial coefficients.

Parameters
[in]coef: The input contiguous vector of non-zero size of,
  • type complex of kind any supported by the processor (e.g., CK, CK32, CK64, or CK128), or
  • type real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128),
containing the coefficients of the polynomial in the order of increasing power.
Returns
str : The output allocatable scalar of type character of default kind SK containing the polynomial expression corresponding to the input polynomial coefficients.


Possible calling interfaces

use pm_kind, only: SK
character(:, SK), allocatable :: str
str = getPolyStr(coef(:))
Generate and return a string containing the polynomial expression corresponding to the input polynomi...
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
Definition: pm_kind.F90:268
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
Definition: pm_kind.F90:539
This module contains procedures and generic interfaces for performing various mathematical operations...
Warning
The pure procedure(s) documented herein become impure when the ParaMonte library is compiled with preprocessor macro CHECK_ENABLED=1.
By default, these procedures are pure in release build and impure in debug and testing builds. The conditional impurity is caused by the call to setResized.
See also
pm_polynomial
pm_polynomial
pm_polynomial


Example usage

1program example
2
3 use pm_kind, only: SK, IK
4 use pm_kind, only: RKG => RKS ! all processor real and complex kinds are supported.
5 use pm_io, only: display_type
8
9 implicit none
10
11 integer(IK) :: lenQuo
12 type(display_type) :: disp
13 disp = display_type(file = "main.out.F90")
14
15 call disp%skip()
16 call disp%show("getPolyStr([real(RKG) :: ])")
17 call disp%show( getPolyStr([real(RKG) :: ]) )
18 call disp%skip()
19
20 call disp%skip()
21 call disp%show("getPolyStr([real(RKG) :: -1.5])")
22 call disp%show( getPolyStr([real(RKG) :: -1.5]) )
23 call disp%skip()
24
25 call disp%skip()
26 call disp%show("getPolyStr([real(RKG) :: 0., -2., 0., +4.])")
27 call disp%show( getPolyStr([real(RKG) :: 0., -2., 0., +4.]) )
28 call disp%skip()
29
30 call disp%skip()
31 call disp%show("getPolyStr([real(RKG) :: -1., 2.2, -3.33, 4.444])")
32 call disp%show( getPolyStr([real(RKG) :: -1., 2.2, -3.33, 4.444]) )
33 call disp%skip()
34
35 call disp%skip()
36 call disp%show("getPolyStr([complex(RKG) :: ])")
37 call disp%show( getPolyStr([complex(RKG) :: ]) )
38 call disp%skip()
39
40 call disp%skip()
41 call disp%show("getPolyStr([complex(RKG) :: (-1.5, +1.5)])")
42 call disp%show( getPolyStr([complex(RKG) :: (-1.5, +1.5)]) )
43 call disp%skip()
44
45 call disp%skip()
46 call disp%show("getPolyStr([complex(RKG) :: 0., -2., 0., +4.])")
47 call disp%show( getPolyStr([complex(RKG) :: 0., -2., 0., +4.]) )
48 call disp%skip()
49
50 call disp%skip()
51 call disp%show("getPolyStr([complex(RKG) :: -1., 2.2, -3.33, 4.444])")
52 call disp%show( getPolyStr([complex(RKG) :: -1., 2.2, -3.33, 4.444]) )
53 call disp%skip()
54
55end program example
This is a generic method of the derived type display_type with pass attribute.
Definition: pm_io.F90:11726
This is a generic method of the derived type display_type with pass attribute.
Definition: pm_io.F90:11508
Return the quotient and remainder of dividing a polynomial with another polynomial of arbitrary degre...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
Definition: pm_io.F90:252
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
Definition: pm_io.F90:11393
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
Definition: pm_kind.F90:540
integer, parameter RKS
The single-precision real kind in Fortran mode. On most platforms, this is an 32-bit real kind.
Definition: pm_kind.F90:567
Generate and return an object of type display_type.
Definition: pm_io.F90:10282

Example Unix compile command via Intel ifort compiler
1#!/usr/bin/env sh
2rm main.exe
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Example Windows Batch compile command via Intel ifort compiler
1del main.exe
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
4main.exe

Example Unix / MinGW compile command via GNU gfortran compiler
1#!/usr/bin/env sh
2rm main.exe
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Example output
1
2getPolyStr([real(RKG) :: ])
3
4
5
6getPolyStr([real(RKG) :: -1.5])
7-1.5x^0
8
9
10getPolyStr([real(RKG) :: 0., -2., 0., +4.])
110.x^0 - 2.x^1 + 0.x^2 + 4.x^3
12
13
14getPolyStr([real(RKG) :: -1., 2.2, -3.33, 4.444])
15-1.x^0 + 2.20000005x^1 - 3.32999992x^2 + 4.44399977x^3
16
17
18getPolyStr([complex(RKG) :: ])
19
20
21
22getPolyStr([complex(RKG) :: (-1.5, +1.5)])
23(-1.5,1.5)x^0
24
25
26getPolyStr([complex(RKG) :: 0., -2., 0., +4.])
27(0.,0.)x^0 + (-2.,0.)x^1 + (0.,0.)x^2 + (4.,0.)x^3
28
29
30getPolyStr([complex(RKG) :: -1., 2.2, -3.33, 4.444])
31(-1.,0.)x^0 + (2.20000005,0.)x^1 + (-3.32999992,0.)x^2 + (4.44399977,0.)x^3
32
33
Test:
test_pm_polynomial
Todo:
Normal Priority: This generic interface can be expanded to include an option for the name of the polynomial variable and operator symbols.
Todo:
Low Priority: The runtime performance of this algorithm can be improved by calling setStr() in the implementation and adding fixed symbols (variable name, ...) progressively.
In particular, the implied do-loop in the current implementation likely significantly stresses the compiler for high-degree polynomials.
The significance of the improvements should be weighed in the light of the relevance of such improvements.
Is this procedure going to be called frequently in numerically intensive applications? Unlikely.


Final Remarks


If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.

  1. If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
  2. If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.

This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.

Author:
Amir Shahmoradi, Thursday 1:45 AM, August 22, 2019, Dallas, TX

Definition at line 3047 of file pm_polynomial.F90.


The documentation for this interface was generated from the following file: