Generate and return the natural logarithm of the Probability Density Function (PDF) of the MultiVariate Normal distribution as defined in the description of pm_distMultiNorm.
More...
Generate and return the natural logarithm of the Probability Density Function (PDF) of the MultiVariate Normal distribution as defined in the description of pm_distMultiNorm.
See the documentation of pm_distMultiNorm for the definition of the MVN PDF.
- Parameters
-
[in] | X | : The input array of shape (:) of type real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128) of arbitrary size (ndim : representing the number of dimensions of the MVN) at which the log(PDF) of the MVN must be computed. |
[in] | mean | : The input array of the same type kind, and shape as the input X containing the mean of the MVN distribution.
(optional, default = [( 0., integer :: i = 1, size(X) )] ) |
[in] | invCov | : The input square matrix (of shape (ndim,ndim) ) of the same type and kind as the input X , containing the inverse of the covariance matrix of the MVN distribution.
(optional, default = Identity Matrix : getMatInit([size(X), size(X)], uppLowDia_type(), 0., 0., 1.)) |
[in] | logPDFNF | : The input scalar of the same type and kind as the input X containing the normalization factor of the MVN distribution.
Specifying this input argument can lead to faster runtime when the log(PDF) must be computed for multiple different X values given the same inverse covariance matrix for the MVN PDF.
It can be obtained by calling getMultiNormLogPDFNF.
(optional, default = getMultiNormLogPDFNF(ndim = size(X), logSqrtDetInvCov) ) |
- Returns
logPDF
: The output scalar or array of the same shape as the input array-like arguments, of the same type and kind as the input logDetInvCovMat
representing the normalization factor of the MVN distribution.
Possible calling interfaces ⛓
Generate and return the natural logarithm of the Probability Density Function (PDF) of the MultiVaria...
This module contains classes and procedures for computing various statistical quantities related to t...
- Warning
- The condition
all(size(mean) == size(X, 1))
must hold for the corresponding input arguments.
The condition all(shape(invCov) == size(X, 1))
must hold for the corresponding input arguments.
These conditions are verified only if the library is built with the preprocessor macro CHECK_ENABLED=1
.
-
The
pure
procedure(s) documented herein become impure
when the ParaMonte library is compiled with preprocessor macro CHECK_ENABLED=1
.
By default, these procedures are pure
in release
build and impure
in debug
and testing
builds.
- See also
- getMultiNormLogPDFNF
Example usage ⛓
13 integer(IK),
parameter :: NP
= 5_IK
15 type(display_type) :: disp
19 call disp%show(
"getMultiNormLogPDF([0._RKG]) ! 1D Norm")
24 call disp%show(
"getMultiNormLogPDF([0._RKG], mean = [10._RKG], invCov = reshape([1._RKG], [1, 1])) ! 1D Norm")
29 call disp%show(
"getMultiNormLogPDF([real(RKG) :: 0, 1], mean = [-1._RKG, 1._RKG], invCov = reshape([+1.3_RKG, -.66_RKG, -.66_RKG, 1.3_RKG], [2, 2])) ! 2D Norm")
30 call disp%show(
getMultiNormLogPDF([
real(RKG) ::
0,
1], mean
= [
-1._RKG,
1._RKG], invCov
= reshape([
+1.3_RKG,
-.
66_RKG,
-.
66_RKG,
1.3_RKG], [
2,
2])) )
38 integer(IK) :: fileUnit, i, j
39 real(RKG) ,
parameter :: signif
= 5
40 integer(IK) ,
parameter :: ndim
= 2, npnt
= 500
41 real(RKG) :: grid(ndim, npnt, npnt), mean(ndim), invCov(ndim, ndim)
42 mean
= [
+5._RKG,
-5._RKG]
43 invCov
= reshape([
+1.3_RKG,
-.
66_RKG,
-.
66_RKG,
1.3_RKG], [ndim, ndim])
45 grid(i, :, :)
= spread (
getLinSpace( x1
= mean(i)
- signif
&
46 , x2
= mean(i)
+ signif
&
50 open(newunit
= fileUnit, file
= "getMultiNormLogPDF.D2.RK.txt")
51 do i
= 1,
size(grid,
2)
52 do j
= 1,
size(grid,
3)
53 write(fileUnit,
"(5(g0,:,','))") grid(:, i, j),
exp(
getMultiNormLogPDF(grid(:, i, j), mean, invCov))
Generate count evenly spaced points over the interval [x1, x2] if x1 < x2, or [x2,...
Return the linSpace output argument with size(linSpace) elements of evenly-spaced values over the int...
Return the logSpace output argument with size(logSpace) elements of logarithmically-evenly-spaced val...
This is a generic method of the derived type display_type with pass attribute.
This is a generic method of the derived type display_type with pass attribute.
This module contains procedures and generic interfaces for generating arrays with linear or logarithm...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
integer, parameter RK
The default real kind in the ParaMonte library: real64 in Fortran, c_double in C-Fortran Interoperati...
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
Generate and return an object of type display_type.
Example Unix compile command via Intel ifort
compiler ⛓
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example Windows Batch compile command via Intel ifort
compiler ⛓
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
Example Unix / MinGW compile command via GNU gfortran
compiler ⛓
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
Example output ⛓
10getMultiNormLogPDF([
real(RKG) ::
0,
1], mean
= [
-1._RKG,
1._RKG], invCov
= reshape([
+1.3_RKG,
-.
66_RKG,
-.
66_RKG,
1.3_RKG], [
2,
2]))
Postprocessing of the example output ⛓
3import matplotlib.pyplot
as plt
17xlab = {
"CK" :
"X ( real/imaginary components )"
18 ,
"IK" :
"X ( integer-valued )"
19 ,
"RK" :
"X ( real-valued )"
21legends = [
r"$\mu = 0.0,~\sigma = 3.0$"
22 ,
r"$\mu = 0.0,~\sigma = 1.0$"
23 ,
r"$\mu = 0.0,~\sigma = 0.3$"
24 ,
r"$\mu = -2.,~\sigma = 1.0$"
27for kind
in [
"IK",
"CK",
"RK"]:
31 pattern =
"*.D1."+kind+
".txt"
32 fileList = glob.glob(pattern)
33 if len(fileList) == 1:
35 df = pd.read_csv(fileList[0], delimiter =
",")
37 fig = plt.figure(figsize = 1.25 * np.array([6.4, 4.8]), dpi = 300)
41 plt.plot( df.values[:, 0]
44 , linewidth = linewidth
47 plt.plot( df.values[:, 1]
50 , linewidth = linewidth
54 plt.plot( df.values[:, 0]
57 , linewidth = linewidth
64 plt.xticks(fontsize = fontsize - 2)
65 plt.yticks(fontsize = fontsize - 2)
66 ax.set_xlabel(xlab[kind], fontsize = 17)
67 ax.set_ylabel(
"Probability Density Function (PDF)", fontsize = 17)
69 plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
70 ax.tick_params(axis =
"y", which =
"minor")
71 ax.tick_params(axis =
"x", which =
"minor")
74 plt.savefig(fileList[0].replace(
".txt",
".png"))
76 elif len(fileList) > 1:
78 sys.exit(
"Ambiguous file list exists.")
81 pattern =
"*.D2."+kind+
".txt"
82 fileList = glob.glob(pattern)
83 if len(fileList) == 1:
85 df = pd.read_csv(fileList[0], delimiter =
",", header =
None)
88 npnt = math.isqrt(len(df[:, 0]))
89 gridx = np.reshape(df[:, 0], newshape = (npnt, npnt), order =
'F')
90 gridy = np.reshape(df[:,1], newshape = (npnt, npnt), order =
'F')
91 gridz = np.reshape(df[:,2], newshape = (npnt, npnt), order =
'C')
93 fig, ax = plt.subplots(subplot_kw = {
"projection":
"3d"})
94 fig = plt.figure(figsize = 1.25 * np.array([6.4, 4.8]), dpi = 300)
95 ax = fig.add_subplot(1, 1, 1, projection =
'3d')
97 ax.plot_surface(gridx, gridy, gridz, cmap =
'GnBu', linewidth = 0)
98 ax.set_xlabel(
'X axis')
99 ax.set_ylabel(
'Y axis')
100 ax.set_zlabel(
"PDF", fontsize = 17)
102 plt.xticks(fontsize = fontsize - 2)
103 plt.yticks(fontsize = fontsize - 2)
105 plt.grid(visible =
True, which =
"both", axis =
"both", color =
"0.85", linestyle =
"-")
106 ax.tick_params(axis =
"y", which =
"minor")
107 ax.tick_params(axis =
"x", which =
"minor")
110 plt.savefig(fileList[0].replace(
".txt",
".png"))
112 elif len(fileList) > 1:
114 sys.exit(
"Ambiguous file list exists.")
Visualization of the example output ⛓
- Test:
- test_pm_distMultiNorm
- Todo:
- Normal Priority: When the input argument
logPDFNF
is missing and invCov
is present, there is a possibility that the Cholesky Factorization in the computation of logSqrtDetInvCov
fails.
In such cases, the procedure will halt the program by calling error stop
.
An optional info
output argument must be added in the future to handle such runtime failures gracefully.
Final Remarks ⛓
If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.
-
If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
-
If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.
This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.
- Copyright
- Computational Data Science Lab
- Author:
- Amir Shahmoradi, Monday March 6, 2017, 3:22 pm, Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin.
Definition at line 449 of file pm_distMultiNorm.F90.