ParaMonte Fortran 2.0.0
Parallel Monte Carlo and Machine Learning Library
See the latest version documentation.
pm_distEggBox::getEggBoxLogUDF Interface Reference

Generate and return the natural logarithm of the EggBox density function at the specified input point X. More...

Detailed Description

Generate and return the natural logarithm of the EggBox density function at the specified input point X.

See the documentation of pm_distEggBox for details of the EggBox density function.

Parameters
[in]X: The input contiguous vector of size (1:ndim) of,
  • type real of kind any supported by the processor (e.g., RK, RK32, RK64, or RK128),
containing the ndim-dimensional point at which the function must be evaluated.
[in]mu: The input contiguous vector of the same type, kind, rank, and size as the input X, representing the location parameter ( \(\mu\)) of the density function.
(optional, default = 0.. It must be present if and only if the input argument sigma is also present.)
[in]sigma: The input contiguous vector of the same type, kind, rank, and size as the input X, representing the scale parameter ( \(\sigma\)) of the density function.
(optional, default = 1. It must be present if and only if the input argument mu is also present.)
[in]alpha: The input scalar of the same type and kind as the input X, representing the shape parameter ( \(\alpha\)) of the density function.
(optional, default = 5.)
[in]zeta: The input scalar of the same type and kind as the input X, representing the intercept parameter ( \(\zeta\)) of the density function.
(optional, default = 2.)
Returns
logUDF : The output scalar of the same type and kind as the output argument x representing the value of the density function at the specified location.


Possible calling interfaces

logUDF = getEggBoxLogUDF(X(1:ndim), alpha = alpha, zeta = zeta)
logUDF = getEggBoxLogUDF(X(1:ndim), mu(1:ndim), sigma(1:ndim), alpha = alpha, zeta = zeta)
Generate and return the natural logarithm of the EggBox density function at the specified input point...
This module contains classes and procedures for computing various statistical quantities related to t...
Warning
The condition size(X) == size(mu) must hold for the corresponding input arguments.
The condition size(X) == size(sigma) must hold for the corresponding input arguments.
These conditions are verified only if the library is built with the preprocessor macro CHECK_ENABLED=1.
Remarks
The procedures under discussion are impure.


Example usage

1program example
2
3 use pm_kind, only: SK, IK
4 use pm_kind, only: RKG => RK ! all real kinds are supported.
9 use pm_io, only: display_type
10
11 implicit none
12
13 integer(IK), parameter :: NP = 5_IK
14
15 type(display_type) :: disp
16 disp = display_type(file = "main.out.F90")
17
18 call disp%skip()
19 call disp%show("getEggBoxLogUDF([0._RKG]) ! 1D eggbox")
20 call disp%show( getEggBoxLogUDF([0._RKG]) )
21 call disp%skip()
22
23 call disp%skip()
24 call disp%show("getEggBoxLogUDF([0._RKG], [0._RKG], [1._RKG], 5._RKG, 2._RKG) ! 1D eggbox")
25 call disp%show( getEggBoxLogUDF([0._RKG], [0._RKG], [1._RKG], 5._RKG, 2._RKG) )
26 call disp%skip()
27
28 call disp%skip()
29 call disp%show("getEggBoxLogUDF([real(RKG) :: 0, 1], mu = [-1._RKG, 1._RKG], sigma = [2._RKG, .5_RKG]) ! 2D EggBox")
30 call disp%show( getEggBoxLogUDF([real(RKG) :: 0, 1], mu = [-1._RKG, 1._RKG], sigma = [2._RKG, .5_RKG]) )
31 call disp%skip()
32
33 !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34 ! Output an example density array for visualization.
35 !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36
37 block
38 use pm_mathSubAdd, only: operator(.subadd.)
39 use pm_arrayMembership, only: operator(.inrange.)
40 integer(IK) :: fileUnit, i, j
41 real(RKG) , parameter :: signif = 2
42 real(RKG) :: point(1000), density(4), mu(4), sigma(4)
43 mu = [+0._RKG, +0._RKG, +0._RKG, -2._RKG]
44 sigma = [+3._RKG, +1._RKG, +.3_RKG, 1._RKG]
45 call setLinSpace( point &
46 , x1 = minval(mu) - signif * sigma(minloc(mu, 1)) &
47 , x2 = maxval(mu) + signif * sigma(maxloc(mu, 1)) &
48 )
49 open(newunit = fileUnit, file = "getEggBoxLogUDF.D1.RK.txt")
50 do i = 1, size(point)
51 do j = 1, size(density)
52 density(j) = getEggBoxLogUDF(point(i:i), mu(j:j), sigma(j:j))
53 end do
54 write(fileUnit,"(5(g0,:,','))") point(i), density
55 end do
56 close(fileUnit)
57 end block
58
59 block
60 use pm_mathSubAdd, only: operator(.subadd.)
61 use pm_arrayMembership, only: operator(.inrange.)
62 integer(IK) :: fileUnit, i, j
63 real(RKG) , parameter :: signif = 2
64 integer(IK) , parameter :: ndim = 2, npnt = 500
65 real(RKG) :: grid(ndim, npnt, npnt), mu(ndim), sigma(ndim)
66 mu = [+0._RKG, -2._RKG]
67 sigma = [+3._RKG, +1._RKG]
68 do i = 1, ndim
69 grid(i, :, :) = spread ( getLinSpace( x1 = mu(i) - signif * sigma(i) &
70 , x2 = mu(i) + signif * sigma(i) &
71 , count = npnt &
72 ) , 3 - i, npnt)
73 end do
74 open(newunit = fileUnit, file = "getEggBoxLogUDF.D2.RK.txt")
75 do i = 1, size(grid, 2)
76 do j = 1, size(grid, 3)
77 write(fileUnit,"(5(g0,:,','))") grid(:, i, j), getEggBoxLogUDF(grid(:, i, j), mu, sigma)
78 end do
79 end do
80 close(fileUnit)
81 end block
82
83end program example
Generate count evenly spaced points over the interval [x1, x2] if x1 < x2, or [x2,...
Return the linSpace output argument with size(linSpace) elements of evenly-spaced values over the int...
Return the logSpace output argument with size(logSpace) elements of logarithmically-evenly-spaced val...
This is a generic method of the derived type display_type with pass attribute.
Definition: pm_io.F90:11726
This is a generic method of the derived type display_type with pass attribute.
Definition: pm_io.F90:11508
This module contains procedures and generic interfaces for assessing whether particular value(s) or a...
This module contains procedures and generic interfaces for generating arrays with linear or logarithm...
This module contains classes and procedures for input/output (IO) or generic display operations on st...
Definition: pm_io.F90:252
type(display_type) disp
This is a scalar module variable an object of type display_type for general display.
Definition: pm_io.F90:11393
This module defines the relevant Fortran kind type-parameters frequently used in the ParaMonte librar...
Definition: pm_kind.F90:268
integer, parameter RK
The default real kind in the ParaMonte library: real64 in Fortran, c_double in C-Fortran Interoperati...
Definition: pm_kind.F90:543
integer, parameter IK
The default integer kind in the ParaMonte library: int32 in Fortran, c_int32_t in C-Fortran Interoper...
Definition: pm_kind.F90:540
integer, parameter SK
The default character kind in the ParaMonte library: kind("a") in Fortran, c_char in C-Fortran Intero...
Definition: pm_kind.F90:539
This module contains procedures and generic interfaces for evaluating the mathematical operator acti...
Generate and return an object of type display_type.
Definition: pm_io.F90:10282

Example Unix compile command via Intel ifort compiler
1#!/usr/bin/env sh
2rm main.exe
3ifort -fpp -standard-semantics -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Example Windows Batch compile command via Intel ifort compiler
1del main.exe
2set PATH=..\..\..\lib;%PATH%
3ifort /fpp /standard-semantics /O3 /I:..\..\..\include main.F90 ..\..\..\lib\libparamonte*.lib /exe:main.exe
4main.exe

Example Unix / MinGW compile command via GNU gfortran compiler
1#!/usr/bin/env sh
2rm main.exe
3gfortran -cpp -ffree-line-length-none -O3 -Wl,-rpath,../../../lib -I../../../inc main.F90 ../../../lib/libparamonte* -o main.exe
4./main.exe

Example output
1
2getEggBoxLogUDF([0._RKG]) ! 1D eggbox
3+243.00000000000000
4
5
6getEggBoxLogUDF([0._RKG], [0._RKG], [1._RKG], 5._RKG, 2._RKG) ! 1D eggbox
7+243.00000000000000
8
9
10getEggBoxLogUDF([real(RKG) :: 0, 1], mu = [-1._RKG, 1._RKG], sigma = [2._RKG, .5_RKG]) ! 2D EggBox
11+32.000000000000000
12
13

Postprocessing of the example output
1#!/usr/bin/env python
2
3import matplotlib.pyplot as plt
4import pandas as pd
5import numpy as np
6import math
7import glob
8import sys
9
10linewidth = 2
11fontsize = 17
12
13marker ={ "CK" : "-"
14 , "IK" : "."
15 , "RK" : "-"
16 }
17xlab = { "CK" : "X ( real/imaginary components )"
18 , "IK" : "X ( integer-valued )"
19 , "RK" : "X ( real-valued )"
20 }
21legends = [ r"$\mu = 0.0,~\sigma = 3.0$"
22 , r"$\mu = 0.0,~\sigma = 1.0$"
23 , r"$\mu = 0.0,~\sigma = 0.3$"
24 , r"$\mu = -2.,~\sigma = 1.0$"
25 ]
26
27for kind in ["IK", "CK", "RK"]:
28
29 # Make 1d plot.
30
31 pattern = "*.D1."+kind+".txt"
32 fileList = glob.glob(pattern)
33 if len(fileList) == 1:
34
35 df = pd.read_csv(fileList[0], delimiter = ",")
36
37 fig = plt.figure(figsize = 1.25 * np.array([6.4, 4.8]), dpi = 300)
38 ax = plt.subplot()
39
40 if kind == "CK":
41 plt.plot( df.values[:, 0]
42 , df.values[:,1:5]
43 , marker[kind]
44 , linewidth = linewidth
45 #, color = "r"
46 )
47 plt.plot( df.values[:, 1]
48 , df.values[:,1:5]
49 , marker[kind]
50 , linewidth = linewidth
51 #, color = "blue"
52 )
53 else:
54 plt.plot( df.values[:, 0]
55 , df.values[:,1:5]
56 , marker[kind]
57 , linewidth = linewidth
58 #, color = "r"
59 )
60 ax.legend ( legends
61 , fontsize = fontsize
62 )
63
64 plt.xticks(fontsize = fontsize - 2)
65 plt.yticks(fontsize = fontsize - 2)
66 ax.set_xlabel(xlab[kind], fontsize = 17)
67 ax.set_ylabel("Probability Density Function (PDF)", fontsize = 17)
68
69 plt.grid(visible = True, which = "both", axis = "both", color = "0.85", linestyle = "-")
70 ax.tick_params(axis = "y", which = "minor")
71 ax.tick_params(axis = "x", which = "minor")
72
73 plt.tight_layout()
74 plt.savefig(fileList[0].replace(".txt",".png"))
75
76 elif len(fileList) > 1:
77
78 sys.exit("Ambiguous file list exists.")
79 # Make 2d plot.
80
81 pattern = "*.D2."+kind+".txt"
82 fileList = glob.glob(pattern)
83 if len(fileList) == 1:
84
85 df = pd.read_csv(fileList[0], delimiter = ",", header = None)
86 df = df.values
87
88 npnt = math.isqrt(len(df[:, 0]))
89 gridx = np.reshape(df[:, 0], newshape = (npnt, npnt), order = 'F')
90 gridy = np.reshape(df[:,1], newshape = (npnt, npnt), order = 'F')
91 gridz = np.reshape(df[:,2], newshape = (npnt, npnt), order = 'C')
92
93 fig, ax = plt.subplots(subplot_kw = {"projection": "3d"})
94 fig = plt.figure(figsize = 1.25 * np.array([6.4, 4.8]), dpi = 300)
95 ax = fig.add_subplot(1, 1, 1, projection = '3d')
96
97 ax.plot_surface(gridx, gridy, gridz, cmap = 'viridis', linewidth = 0)
98 ax.set_xlabel('X axis')
99 ax.set_ylabel('Y axis')
100 ax.set_zlabel("Log ( Density )", fontsize = 17)
101
102 plt.xticks(fontsize = fontsize - 2)
103 plt.yticks(fontsize = fontsize - 2)
104
105 plt.grid(visible = True, which = "both", axis = "both", color = "0.85", linestyle = "-")
106 ax.tick_params(axis = "y", which = "minor")
107 ax.tick_params(axis = "x", which = "minor")
108
109 plt.tight_layout()
110 plt.savefig(fileList[0].replace(".txt",".png"))
111
112 elif len(fileList) > 1:
113
114 sys.exit("Ambiguous file list exists.")

Visualization of the example output
Test:
test_pm_distEggBox


Final Remarks


If you believe this algorithm or its documentation can be improved, we appreciate your contribution and help to edit this page's documentation and source file on GitHub.
For details on the naming abbreviations, see this page.
For details on the naming conventions, see this page.
This software is distributed under the MIT license with additional terms outlined below.

  1. If you use any parts or concepts from this library to any extent, please acknowledge the usage by citing the relevant publications of the ParaMonte library.
  2. If you regenerate any parts/ideas from this library in a programming environment other than those currently supported by this ParaMonte library (i.e., other than C, C++, Fortran, MATLAB, Python, R), please also ask the end users to cite this original ParaMonte library.

This software is available to the public under a highly permissive license.
Help us justify its continued development and maintenance by acknowledging its benefit to society, distributing it, and contributing to it.

Author:
Amir Shahmoradi, Oct 16, 2009, 11:14 AM, Michigan

Definition at line 110 of file pm_distEggBox.F90.


The documentation for this interface was generated from the following file: