The mathematical objective function

Suppose we want to sample random vectors

\[\mathbf{x}=[x_1,x_2,x_3,x_4] ~~,\]

from a 4-dimensional Multivariate Normal (MVN) Probability Density Function (PDF),

\[\mathrm{PDF}_\mathrm{MVN} \equiv \pi ( \mathbf{x} ~|~ \mu, \Sigma) = (2\pi)^{-\frac{k}{2}} \sqrt{|\Sigma|} \exp\bigg( -\frac{1}{2} (\mathbf{x}-\mu)^\mathrm{T}\Sigma^{-1}(\mathbf{x}-\mu) \bigg) ~~,\]

that has a mean vector,

\[\mu = [0,0,0,0]\]

with a covariance matrix,

\[\Sigma = \begin{bmatrix} 1.0 & 0.5 & 0.5 & 0.5 \\ 0.5 & 1.0 & 0.5 & 0.5 \\ 0.5 & 0.5 & 1.0 & 0.5 \\ 0.5 & 0.5 & 0.5 & 1.0 \end{bmatrix}\]

This will serve as our mathematical objective function. Clearly, all of the four dimensions of this MVN are correlated with each other with a Pearson’s correlation coefficient of $0.5$.

Working with the natural logarithm of the objective function

In general, since probabilities are often tiny numbers, we’d want to always work with their natural logarithms in the world of computers to avoid unwanted overflow or underflow of numbers, which can crash our simulations. To highlight the importance of taking the natural logarithms of all input objective functions to the ParaMonte routines, we always name them like getLogFunc().

Implementing the objective function in C++

Here is a minimalistic implementation of the 4-D multivariate normal distribution objective function in C++, which can also be downloaded as logfunc.cpp.

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  
//  Description:
//      +   Return the natural logarithm of an ndim-dimensional Multivariate Normal (MVN) 
//          probability density function (PDF) with the Mean and Covariance Matrix as defined below.
//          Reference: https://en.wikipedia.org/wiki/Multivariate_normal_distribution
//  Input:
//      +   ndim:       The number of dimensions of the domain of the objective function.
//      +   point:      The input 64-bit real-valued vector of length ndim, 
//                      at which the natural logarithm of objective function is computed.
//  Output:
//      +   logFunc:    A 64-bit real scalar number representing the natural logarithm of the objective function.
//  Author:
//      +   Computational Data Science Lab, Monday 9:03 AM, May 16 2016, ICES, UT Austin
//  Visit:
//      +   https://www.cdslab.org/paramonte
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#include "logfunc.hpp"

double getLogFunc   (
                    int32_t ndim, 
                    double Point[]
                    )
{

    // multivariate normal (MVN) distribution specifications: 

    const double LOG_INVERSE_SQRT_TWO_PI = log(0.398942280401432);  // log(1/sqrt(2*Pi))
    const double MEAN[NDIM] = {0., 0., 0., 0.};                     // mean vector of the MVN
    const double COVMAT[NDIM][NDIM] =       {
                                            {1.0,0.5,0.5,0.5},
                                            {0.5,1.0,0.5,0.5},
                                            {0.5,0.5,1.0,0.5},
                                            {0.5,0.5,0.5,1.0}
                                            };                      // covariance matrix of the MVN
    const double INVCOVMAT[NDIM][NDIM] =    {
                                            {+1.6, -0.4, -0.4, -0.4},
                                            {-0.4, +1.6, -0.4, -0.4},
                                            {-0.4, -0.4, +1.6, -0.4},
                                            {-0.4, -0.4, -0.4, +1.6}
                                            };                      // inverse covariance matrix of the MVN
    const double LOG_SQRT_DET_INV_COV = 0.581575404902840;          // logarithm of square root of the determinant of the inverse covariance matrix

    // subtract mean vector from the input point

    int i;
    double NormedPoint[NDIM];
	for(i = 0; i < NDIM; i++){
        NormedPoint[i] = Point[i] - MEAN[i];
    }

    // compute the log probability density function of the MVN

    double exponentTerm = 0.;
	for(i = 0; i < NDIM; i++){

        double MatMulResult[NDIM];
        MatMulResult[i] = 0.;
        int j;
        for(j = 0; j < NDIM; j++){
            MatMulResult[i] += INVCOVMAT[i][j] * NormedPoint[j];
        }

        exponentTerm += NormedPoint[i] * MatMulResult[i];

    }

    double logFunc = NDIM * LOG_INVERSE_SQRT_TWO_PI + LOG_SQRT_DET_INV_COV - 0.5*exponentTerm;

    return logFunc;

}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

Here is the contents of the corresponding C++ header file, which can also be downloaded as logfunc.hpp.

#ifndef PM_LOG_FUNC
#define PM_LOG_FUNC

#include <cmath>
#include <cstdint>

const int32_t NDIM = 4;  // The number of dimensions of the domain of the objective function.

double getLogFunc   (
                    int32_t ,   // ndim
                    double []   // Point
                    );

#endif


Calling the ParaMonte samplers

Suppose we want to randomly sample the above objective function via the Delayed-Rejection Adaptive Metropolis-Hastings Markov Chain Monte Carlo sampler of ParaMonte (the ParaDRAM sampler).

The following C++ main code can be used to call the ParaMonte library routine runParaDRAM(),

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  
//  Description:
//      +   Run the Monte Carlo sampler of the ParaMonte library given the input log-target density function `getLogFunc()`.
//  Output:
//      +   The simulation output files.
//  Author:
//      +   Computational Data Science Lab, Monday 9:03 AM, May 16 2016, ICES, UT Austin
//  Visit:
//      +   https://www.cdslab.org/paramonte
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#include <cstring>
#include "logfunc.hpp"      // getLogFunc, NDIM
#include "paramonte.hpp"    // runParaDRAM

int main()
{
    char inputFile[] = "./paramonte.in";
    int32_t inputFileLen = strlen(inputFile);
    int32_t ndim = NDIM;

    // C rules for argument passing apply here
    runParaDRAM ( ndim
                , &getLogFunc
                , inputFile
                , inputFileLen
                );
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

Calling the ParaMonte samplers: The signature header file

Here is the contents of the C++ paramonte.hpp signature header file for the ParaMonte library routines,

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////
////   MIT License
////
////   ParaMonte: plain powerful parallel Monte Carlo library.
////
////   Copyright (C) 2012-present, The Computational Data Science Lab
////
////   This file is part of the ParaMonte library.
////
////   Permission is hereby granted, free of charge, to any person obtaining a 
////   copy of this software and associated documentation files (the "Software"), 
////   to deal in the Software without restriction, including without limitation 
////   the rights to use, copy, modify, merge, publish, distribute, sublicense, 
////   and/or sell copies of the Software, and to permit persons to whom the 
////   Software is furnished to do so, subject to the following conditions:
////
////   The above copyright notice and this permission notice shall be 
////   included in all copies or substantial portions of the Software.
////
////   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
////   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
////   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 
////   IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 
////   DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 
////   OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE 
////   OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
////
////   ACKNOWLEDGMENT
////
////   ParaMonte is an honor-ware and its currency is acknowledgment and citations.
////   As per the ParaMonte library license agreement terms, if you use any parts of 
////   this library for any purposes, kindly acknowledge the use of ParaMonte in your 
////   work (education/research/industry/development/...) by citing the ParaMonte 
////   library as described on this page:
////
////       https://github.com/cdslaborg/paramonte/blob/3548c097f2a25dfc0613061800656d27d0e0ddbe/ACKNOWLEDGMENT.md
////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//  
//  Description:
//        - The C++ header file containing the prototypes of the ParaMonte library routines to be called from C++.
//  Prototypes:
//        - runParaDRAM()
//  Author:
//        - Computational Data Science Lab, Monday 9:03 AM, May 16 2016, ICES, UT Austin
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#ifndef ParaMonte
#define ParaMonte

#include <cstdint>

extern "C"
{
    void runParaDRAM(
                    // ndim: dimension of the domain of the LogFunc
                    int32_t , 
                    // getLogFunc(ndim, Point(ndim)): procedure pointer to the LogFunc
                    double (*)  (
                                int32_t , 
                                double []
                                ), 
                    // inputFile: ParaDRAM input file, containing the path the file containing a list of
                    // all optional input variables and values
                    char [], 
                    // inputFileLen: the length of the inputFile char vector: int32_t inputFileLen = strlen(inputFile);
                    int32_t
                    );
}

#endif

Calling the ParaMonte samplers: The input file

We will store the simulation specifications in a separate external input file whose path "./paramonte.in" is given by the variable inputFile in the main code above. See this page for a detailed description of the structure and convention rules of the input files. Also, see this page for detailed descriptions of the simulation specifications of the ParaDRAM sampler.

Here is the contents of this paramonte.in input file,

!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
!%  
!%  Description:
!%      +   Run the Monte Carlo sampler of the ParaMonte library given the input log-target density function `getLogFunc()`.
!%  Output:
!%      +   The simulation output files.
!%  Author:
!%      +   Computational Data Science Lab, Monday 9:03 AM, May 16 2016, ICES, UT Austin
!%  Visit:
!%      +   https://www.cdslab.org/paramonte
!%
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
!
!   USAGE:
!
!       --  Comments must begin with an exclamation mark (!).
!       --  Comments can appear anywhere on an empty line or, after a value assignment.
!       --  All variable assignments are optional and can be commented out. In such cases, appropriate default values will be assigned.
!       --  Use ParaDRAM namelist (group) name to group a set of ParaDRAM simulation specification variables.
!       --  The order of the input variables in the namelist groups is irrelevant and unimportant.
!       --  Variables can be defined multiple times, but only the last definition will be considered as input.
!       --  All variable names are case insensitive. However, for clarity, this software follows the camelCase code-writing practice.
!       --  String values must be enclosed with either single or double quotation marks.
!       --  Logical values are case-insensitive and can be either .true., true, or t for a TRUE value, and .false., false, or f for a FALSE value.
!       --  All vectors and arrays in the input file begin with index 1. This is following the convention of 
!           the majority of science-oriented programming languages: Fortran, Julia, Mathematica, MATLAB, and R.
!
!      For comprehensive guidelines on the input file organization and rules, visit: 
!   
!           https://www.cdslab.org/paramonte/notes/usage/paradram/input/
!   
!      To see detailed descriptions of each of variables, visit:
!   
!           https://www.cdslab.org/paramonte/notes/usage/paradram/specifications/
!

&ParaDRAM

    ! Base specifications

    description                         = "
This\n
    is a\n
        multi-line\n
            description."                                   ! strings must be enclosed with "" or '' and can be continued on multiple lines.
                                                            ! No comments within strings are allowed.
   !outputColumnWidth                   = 25                ! this is an example of a variable that is commented out and 
                                                            ! therefore, its value won't be read by the sampler routine.
                                                            ! To pass it to the routine, simply remove the ! mark at 
                                                            ! the beginning of the line.
    outputRealPrecision                 = 17
   !outputDelimiter                     = ","
    outputFileName                      = "./out/"          ! the last forward-slash character indicates that this 
                                                            ! is the folder where the output files will have to stored.
                                                            ! However, since no output filename prefix has been specified,
                                                            ! the output filenames will be assigned a randomly-generated prefix.
   !sampleSize                          = 111
    randomSeed                          = 2136275,
    chainFileFormat                     = "compact"
    variableNameList                    = "variable1"       ! Notice the missing fourth variable name here. 
                                        , "variable2"       ! Any missing variable name will be automatically assigned an appropriate name. 
                                        , "variable3"
    domainLowerLimitVec                 = 4*-1.e300         ! repetition pattern rules apply again here. 4 dimensions => 4-element vector of values.
    domainUpperLimitVec                 = 4*1.e300          ! repetition pattern rules apply again here. 4 dimensions => 4-element vector of values.
    parallelizationModel                = "single chain"    ! "singleChain" would also work. Similarly, "multichain", "multi chain", or "multiChain".
   !targetAcceptanceRate                = 0.23e0
    progressReportPeriod                = 1000
    maxNumDomainCheckToWarn             = 100
    maxNumDomainCheckToStop             = 1000
    restartFileFormat                   = "binary"
    overwriteRequested                  = true              ! FALSE, false, .false., .f., and f would be also all valid logical values representing False
    silentModeRequested                 = false             ! FALSE, false, .false., .f., and f would be also all valid logical values representing False
   !mpiFinalizeRequested                = true              ! TRUE, true, .true., .t., and t would be also all valid logical values representing True

    ! MCMC specifications

    chainSize                           = 30000
    startPointVec                       = 4*1.e0            ! four values of 1.e0 are specified here by the repetition pattern symbol *
   !sampleRefinementCount               = 10
    sampleRefinementMethod              = "BatchMeans"
    randomStartPointDomainLowerLimitVec = 4*-100.e0         ! repetition pattern rules apply again here. 4 dimensions => 4-element vector of values.
    randomStartPointDomainUpperLimitVec = 4*100.0           ! repetition pattern rules apply again here. 4 dimensions => 4-element vector of values.
    randomStartPointRequested           = false

    ! DRAM specifications

    scaleFactor                         = "2*0.5*Gelman"    ! The asterisk here means multiplication since it is enclosed within quotation marks.
    proposalModel                       = "normal"          ! or "uniform" as you wish.
    adaptiveUpdateCount                 = 10000000
    adaptiveUpdatePeriod                = 35
    greedyAdaptationCount               = 0
   !delayedRejectionCount               = 5
   !delayedRejectionScaleFactorVec      = 5*1.
   !burninAdaptationMeasure             = 1.
   !proposalStartStdVec                 = 4*1.0             ! repetition pattern rules apply again here. 4 dimensions => 4-element vector of values.
   !proposalStartCorMat                 =   1,0,0,0,        ! 2-dimensional correlation-matrix definition, although it is commented out and won't be read.
   !                                        0,1,0,0,
   !                                        0,0,1,0,
   !                                        0,0,0,1,
   !proposalStartCovMat                 =   100,0,0,0,
   !                                        0,100,0,0,
   !                                        0,0,100,0,
   !                                        0,0,0,100,

/


Compiling and linking to generate the executable

Now, follow the instructions on this page on how to build your C++ example for serial and parallel simulations on the Operating System (OS) of you choice: Windows, Linux, or macOS / Darwin.


Running the ParaMonte simulations

Once you have built your application, running the simulation is as simple as calling the generated executable on the command-prompt for serial applications, or invoking the MPI/Coarray launcher on the command-prompt for MPI/Coarray parallel simulations. Follow the instructions and tips on this page on how to run your C++ example on either Windows, Linux, or macOS / Darwin Operating System (OS), on either a single processor or in parallel, on multiple processors or clusters of nodes of processors.

Running the ParaMonte simulations on a single processor

If the executable main.exe has been built for serial simulations (using one processor), simply call the executable on the command line. The calling method is identical on all three Operating Systems: Windows, Linux, and Darwin (macOS). Here is an example call on Windows OS,

D:\example>main.exe

************************************************************************************************************************************
************************************************************************************************************************************
****                                                                                                                            ****
****                                                                                                                            ****
****                                                         ParaMonte                                                          ****
****                                                       Version 1.0.0                                                        ****
****                                                        May 23 2018                                                         ****
****                                                                                                                            ****
****                                                   Department of Physics                                                    ****
****                                              Computational & Data Science Lab                                              ****
****                                          Data Science Program, College of Science                                          ****
****                                            The University of Texas at Arlington                                            ****
****                                                                                                                            ****
****                                                  originally developed at                                                   ****
****                                                                                                                            ****
****                                                 Multiscale Modeling Group                                                  ****
****                                          Center for Computational Oncology (CCO)                                           ****
****                                 Oden Institute for Computational Engineering and Sciences                                  ****
****                               Department of Aerospace Engineering and Engineering Mechanics                                ****
****                                     Department of Neurology, Dell-Seton Medical School                                     ****
****                                            Department of Biomedical Engineering                                            ****
****                                             The University of Texas at Austin                                              ****
****                                                                                                                            ****
****                                   For questions and further information, please contact:                                   ****
****                                                                                                                            ****
****                                                      Amir Shahmoradi                                                       ****
****                                                                                                                            ****
****                                                   shahmoradi@utexas.edu                                                    ****
****                                                  amir.shahmoradi@uta.edu                                                   ****
****                                                   ashahmoradi@gmail.com                                                    ****
****                                                                                                                            ****
****                                                       cdslab.org/pm                                                        ****
****                                                                                                                            ****
****                                             https://www.cdslab.org/paramonte/                                              ****
****                                                                                                                            ****
****                                                                                                                            ****
************************************************************************************************************************************
************************************************************************************************************************************



************************************************************************************************************************************
****                                                                                                                            ****
****                                              Setting up ParaDRAM environment                                               ****
****                                                                                                                            ****
************************************************************************************************************************************


        ParaDRAM - NOTE: Variable outputFileName detected among the input variables to ParaDRAM:
        ParaDRAM - NOTE: ./out/
        ParaDRAM - NOTE:
        ParaDRAM - NOTE: Absolute path to the current working directory:
        ParaDRAM - NOTE: D:\example
        ParaDRAM - NOTE:
        ParaDRAM - NOTE: Generating the requested directory for ParaDRAM output files:
        ParaDRAM - NOTE: .\out\
        ParaDRAM - NOTE:
        ParaDRAM - NOTE: No user-input filename prefix for ParaDRAM output files detected.
        ParaDRAM - NOTE: Generating appropriate filenames for ParaDRAM output files from the current date and time...
        ParaDRAM - NOTE:
        ParaDRAM - NOTE: ParaDRAM output files will be prefixed with:
        ParaDRAM - NOTE: .\out\ParaDRAM_run_20200322_002335_512



        ParaDRAM - NOTE: Searching for previous runs of ParaDRAM...



        ParaDRAM - NOTE: No pre-existing ParaDRAM run detected.
        ParaDRAM - NOTE: Starting a fresh ParaDRAM run...



        ParaDRAM - NOTE: Generating the output report file:
        ParaDRAM - NOTE: .\out\ParaDRAM_run_20200322_002335_512_process_1_report.txt



        ParaDRAM - NOTE: Please see the output report and progress files for further realtime simulation details.



                         Accepted/Total Func. Call   Dynamic/Overall Acc. Rate   Elapsed/Remained Time [s]
                         =========================   =========================   =========================
                                    30000 / 130490              0.179 / 0.2291              2.2880 / 0.000



        ParaDRAM - NOTE: Computing the Markov chain's statistical properties...



        ParaDRAM - NOTE: Computing the final decorrelated sample size...



        ParaDRAM - NOTE: Generating the output sample file:
        ParaDRAM - NOTE: .\out\ParaDRAM_run_20200322_002335_512_process_1_sample.txt



        ParaDRAM - NOTE: Computing the output sample's statistical properties...





        ParaDRAM - NOTE: Mission Accomplished.

Running the ParaMonte simulations in parallel on multiple processors

If the executable main.exe has been built for MPI-enabled parallel simulations (on multiple processors), you will need to invoke the MPI launcher to start the simulation.

  • On Windows
    For parallel simulations on a single node (of multiple processors), for example on a single computer, the command typically looks like the following,
    mpiexec -localonly -n 3 main.exe
    

    where the flag -localonly ensures the simulation is run only on a single node. This option avoids the invocation of the Hydra service which would require prior registration. The flag -n 3 assigns three MPI tasks to three physical processors for the simulation. To run your simulation on a cluster of nodes, follow the guidelines and instructions provided by the Intel MPI library development team.

  • On Linux / Darwin (Mac)
    The MPI launcher command for parallel simulations on Linux and Darwin are identical and look very similar to the Windows command (except for the flag -localonly which is not needed),
    mpiexec -n 3 main.exe
    

    where the flag -n 3 assigns three MPI tasks to three physical processors for the simulation.

For example, the following command will launch the simulation on 3 processors on a Windows OS,

D:\example>mpiexec -localonly -n 3 main.exe

************************************************************************************************************************************
************************************************************************************************************************************
****                                                                                                                            ****
****                                                                                                                            ****
****                                                         ParaMonte                                                          ****
****                                                       Version 1.0.0                                                        ****
****                                                        May 23 2018                                                         ****
****                                                                                                                            ****
****                                                   Department of Physics                                                    ****
****                                              Computational & Data Science Lab                                              ****
****                                          Data Science Program, College of Science                                          ****
****                                            The University of Texas at Arlington                                            ****
****                                                                                                                            ****
****                                                  originally developed at                                                   ****
****                                                                                                                            ****
****                                                 Multiscale Modeling Group                                                  ****
****                                          Center for Computational Oncology (CCO)                                           ****
****                                 Oden Institute for Computational Engineering and Sciences                                  ****
****                               Department of Aerospace Engineering and Engineering Mechanics                                ****
****                                     Department of Neurology, Dell-Seton Medical School                                     ****
****                                            Department of Biomedical Engineering                                            ****
****                                             The University of Texas at Austin                                              ****
****                                                                                                                            ****
****                                   For questions and further information, please contact:                                   ****
****                                                                                                                            ****
****                                                      Amir Shahmoradi                                                       ****
****                                                                                                                            ****
****                                                   shahmoradi@utexas.edu                                                    ****
****                                                  amir.shahmoradi@uta.edu                                                   ****
****                                                   ashahmoradi@gmail.com                                                    ****
****                                                                                                                            ****
****                                                       cdslab.org/pm                                                        ****
****                                                                                                                            ****
****                                             https://www.cdslab.org/paramonte/                                              ****
****                                                                                                                            ****
****                                                                                                                            ****
************************************************************************************************************************************
************************************************************************************************************************************



************************************************************************************************************************************
****                                                                                                                            ****
****                                              Setting up ParaDRAM environment                                               ****
****                                                                                                                            ****
************************************************************************************************************************************


        ParaDRAM - NOTE: Variable outputFileName detected among the input variables to ParaDRAM:
        ParaDRAM - NOTE: ./out/
        ParaDRAM - NOTE:
        ParaDRAM - NOTE: Absolute path to the current working directory:
        ParaDRAM - NOTE: D:\example
        ParaDRAM - NOTE:
        ParaDRAM - NOTE: Generating the requested directory for ParaDRAM output files:
        ParaDRAM - NOTE: .\out\
        ParaDRAM - NOTE:
        ParaDRAM - NOTE: No user-input filename prefix for ParaDRAM output files detected.
        ParaDRAM - NOTE: Generating appropriate filenames for ParaDRAM output files from the current date and time...
        ParaDRAM - NOTE:
        ParaDRAM - NOTE: ParaDRAM output files will be prefixed with:
        ParaDRAM - NOTE: .\out\ParaDRAM_run_20200321_193047_392



        ParaDRAM - NOTE: Searching for previous runs of ParaDRAM...



        ParaDRAM - NOTE: No pre-existing ParaDRAM run detected.
        ParaDRAM - NOTE: Starting a fresh ParaDRAM run...



        ParaDRAM - NOTE: Generating the output report file:
        ParaDRAM - NOTE: .\out\ParaDRAM_run_20200321_193047_392_process_1_report.txt



        ParaDRAM - NOTE: Please see the output report and progress files for further realtime simulation details.



                         Accepted/Total Func. Call   Dynamic/Overall Acc. Rate   Elapsed/Remained Time [s]
                         =========================   =========================   =========================
                                    30000 / 130260              0.200 / 0.2298              1.3140 / 0.000



        ParaDRAM - NOTE: The time cost of calling the user-provided objective function must be at least 52.5143 times more
        ParaDRAM - NOTE: (that is, ~24.6651 microseconds) to see any performance benefits from singlechain parallelization
        ParaDRAM - NOTE: model for this simulation. Consider simulating in the serial mode in the future (if used within the
        ParaDRAM - NOTE: same computing environment and with the same configuration as used here).



        ParaDRAM - NOTE: Computing the Markov chain's statistical properties...



        ParaDRAM - NOTE: Computing the final decorrelated sample size...



        ParaDRAM - NOTE: Generating the output sample file:
        ParaDRAM - NOTE: .\out\ParaDRAM_run_20200321_193047_392_process_1_sample.txt



        ParaDRAM - NOTE: Computing the output sample's statistical properties...





        ParaDRAM - NOTE: Mission Accomplished.

You may have noticed the following note in the above simulation output,

        ParaDRAM - NOTE: The time cost of calling the user-provided objective function must be at least 52.5143 times more
        ParaDRAM - NOTE: (that is, ~24.6651 microseconds) to see any performance benefits from singlechain parallelization
        ParaDRAM - NOTE: model for this simulation. Consider simulating in the serial mode in the future (if used within the
        ParaDRAM - NOTE: same computing environment and with the same configuration as used here).

This indicates that the simulation in parallel does not lead to any efficiency gain. Given the computer specifications on which the above simulation is performed (a decently powerful computer), this may not be surprising. Based on the CPU power and inter-processor communication costs, our example simulation in the above seems to be a good candidate for serial simulations instead.

Final notes

Mission accomplished. We have now used the adaptive Markov chain sampler routine of the ParaMonte library to generate random numbers from our objective function of interest. This simulation will generate five files in a folder named ./out/ in the current directory, each of which contains some specific information about the simulation. The purpose of each file is indicated by the suffix at the end of its name: _chain, _sample, _report, _progress, _restart. If multichain parallelism is requested via the input simulation specification variable parallelizationModel = 'multiChain', then there will be five simulation output files generated for each processor separately and independently of each other. This is as if we have simulated several independent but simultaneous ParaDRAM simulations of our objective function. More details about the contents of each of the ParaDRAM simulation output files can be found on this page.

Post-processing the ParaMonte simulation results

The post-processing of the output files generated by the ParaMonte routines can be nicely and quickly done via either the ParaMonte Python library or the ParaMonte MATLAB library.


If you have any questions about the topics discussed on this page, feel free to ask in the comment section below, or raise an issue on the GitHub page of the library, or reach out to the ParaMonte library authors.